Sök i LIBRIS databas

  Utökad sökning


Sökning: onr:"22655398" > Pooled individual p...

Pooled individual patient data from five countries were used to derive a clinical prediction rule for coronary artery disease in primary care.

Aerts, Marc (författare)
Minalu, Girma (författare)
Bösner, Stefan (författare)
visa fler...
Buntinx, Frank (författare)
Burnand, Bernard (författare)
Haasenritter, Jörg (författare)
Herzig, Lilli (författare)
Knottnerus, J André (författare)
Nilsson, Staffan (författare)
Renier, Walter (författare)
Sox, Carol (författare)
Sox, Harold (författare)
Donner-Banzhoff, Norbert (författare)
visa färre...
visa fler...
visa färre...
Elsevier 2017
Ingår i: Journal of Clinical Epidemiology. - 0895-4356. ; 81, 120-128
  • swepub:Mat__t
Abstract Ämnesord
  • OBJECTIVE: To construct a clinical prediction rule for coronary artery disease (CAD) presenting with chest pain in primary care. STUDY DESIGN AND SETTING: Meta-Analysis using 3,099 patients from five studies. To identify candidate predictors, we used random forest trees, multiple imputation of missing values, and logistic regression within individual studies. To generate a prediction rule on the pooled data, we applied a regression model that took account of the differing standard data sets collected by the five studies. RESULTS: The most parsimonious rule included six equally weighted predictors: age ≥55 (males) or ≥65 (females) (+1); attending physician suspected a serious diagnosis (+1); history of CAD (+1); pain brought on by exertion (+1); pain feels like "pressure" (+1); pain reproducible by palpation (-1). CAD was considered absent if the prediction score is <2. The area under the ROC curve was 0.84. We applied this rule to a study setting with a CAD prevalence of 13.2% using a prediction score cutoff of <2 (i.e., -1, 0, or +1). When the score was <2, the probability of CAD was 2.1% (95% CI: 1.1-3.9%); when the score was ≥ 2, it was 43.0% (95% CI: 35.8-50.4%). CONCLUSIONS: Clinical prediction rules are a key strategy for individualizing care. Large data sets based on electronic health records from diverse sites create opportunities for improving their internal and external validity. Our patient-level meta-analysis from five primary care sites should improve external validity. Our strategy for addressing site-to-site systematic variation in missing data should improve internal validity. Using principles derived from decision theory, we also discuss the problem of setting the cutoff prediction score for taking action.


Medical and Health Sciences  (hsv)
Health Sciences  (hsv)
Public Health, Global Health, Social Medicine and Epidemiology  (hsv)
Medicin och hälsovetenskap  (hsv)
Hälsovetenskaper  (hsv)
Folkhälsovetenskap, global hälsa, socialmedicin och epidemiologi  (hsv)
Clinical Medicine  (hsv)
Cardiac and Cardiovascular Systems  (hsv)
Klinisk medicin  (hsv)
Kardiologi  (hsv)


Chest pain
Individual patient data meta-analysis
Medical history taking
Myocardial ischemia
Primary health care
Sensitivity and specificity
Symptom assessment

Hitta via bibliotek

Till lärosätets databas

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy