SwePub
Sök i LIBRIS databas

  Utökad sökning

onr:"swepub:oai:DiVA.org:ltu-38233"
 

Sökning: onr:"swepub:oai:DiVA.org:ltu-38233" > Classification of B...

Classification of Brain Tumor MRIs Using a Kernel Support Vector Machine

Abd-Ellah, Mahmoud Khaled, (författare)
Al-Madina Higher Institute for Engineering and Technology
Awad, Ali Ismail, (författare)
Luleå tekniska universitet, Datavetenskap
Khalaf, Ashraf A. M., (författare)
Minia University, Egypt
visa fler...
Hamed, Hesham F. A., (författare)
Minia University, Egypt
visa färre...
2016
Engelska.
Serie: Communications in Computer and Information Science, 1865-0929
Ingår i: Building Sustainable Health Ecosystems : 6th International Conference on Well-Being in the Information Society, WIS 2016, Tampere, Finland, September 16-18, 2016, Proceedings. - Springer International Publishing. - 978-3-319-44671-4 - 978-3-319-44672-1 ; s. 151-160
  • Konferensbidrag (refereegranskat)
Abstract Ämnesord
Stäng  
  • <p>The use of medical images has been continuously increasing, which makes manual investigations of every image a difficult task. This study focuses on classifying brain magnetic resonance images (MRIs) as normal, where a brain tumor is absent, or as abnormal, where a brain tumor is present. A hybrid intelligent system for automatic brain tumor detection and MRI classification is proposed. This system assists radiologists in interpreting the MRIs, improves the brain tumor diagnostic accuracy, and directs the focus toward the abnormal images only. The proposed computer-aided diagnosis (CAD) system consists of five steps: MRI preprocessing to remove the background noise, image segmentation by combining Otsu binarization and K-means clustering, feature extraction using the discrete wavelet transform (DWT) approach, and dimensionality reduction of the features by applying the principal component analysis (PCA) method. The major features were submitted to a kernel support vector machine (KSVM) for performing the MRI classification. The performance evaluation of the proposed system measured a maximum classification accuracy of 100 % using an available MRIs database. The processing time for all processes was recorded as 1.23 seconds. The obtained results have demonstrated the superiority of the proposed system.</p>

Ämnesord

SAMHÄLLSVETENSKAP  -- Medie- och kommunikationsvetenskap -- Systemvetenskap, informationssystem och informatik med samhällsvetenskaplig inriktning (hsv//swe)
SOCIAL SCIENCES  -- Media and Communications -- Information Systems, Social aspects (hsv//eng)

Nyckelord

Information systems
Informationssystem

Publikations- och innehållstyp

ref (ämneskategori)
kon (ämneskategori)
vet (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy