SwePub
Sök i LIBRIS databas

  Utökad sökning

onr:"swepub:oai:DiVA.org:ltu-38233"
 

Sökning: onr:"swepub:oai:DiVA.org:ltu-38233" > Classification of B...

  • Abd-Ellah, Mahmoud Khaled,Al-Madina Higher Institute for Engineering and Technology (författare)

Classification of Brain Tumor MRIs Using a Kernel Support Vector Machine

  • Artikel/kapitelEngelska2016

Nummerbeteckningar

  • LIBRIS-ID:oai:DiVA.org:ltu-38233
  • 10.1007/978-3-319-44672-1_13doi
  • 2-s2.0-84988509430scopus
  • c8e9718c-d19f-477d-b44a-07703b7e110flocal
  • urn:nbn:se:ltu:diva-38233urn

Ingår i deldatabas

Klassifikation

  • Ämneskategori:ref swepub-contenttype
  • Ämneskategori:kon swepub-publicationtype
  • Ämneskategori:vet swepub-contenttype

Serie

  • Communications in Computer and Information Science,1865-0929

Anmärkningar

  • Published
  • 4
  • <p>The use of medical images has been continuously increasing, which makes manual investigations of every image a difficult task. This study focuses on classifying brain magnetic resonance images (MRIs) as normal, where a brain tumor is absent, or as abnormal, where a brain tumor is present. A hybrid intelligent system for automatic brain tumor detection and MRI classification is proposed. This system assists radiologists in interpreting the MRIs, improves the brain tumor diagnostic accuracy, and directs the focus toward the abnormal images only. The proposed computer-aided diagnosis (CAD) system consists of five steps: MRI preprocessing to remove the background noise, image segmentation by combining Otsu binarization and K-means clustering, feature extraction using the discrete wavelet transform (DWT) approach, and dimensionality reduction of the features by applying the principal component analysis (PCA) method. The major features were submitted to a kernel support vector machine (KSVM) for performing the MRI classification. The performance evaluation of the proposed system measured a maximum classification accuracy of 100 % using an available MRIs database. The processing time for all processes was recorded as 1.23 seconds. The obtained results have demonstrated the superiority of the proposed system.</p>

Ämnesord och genrebeteckningar

Biuppslag (personer, institutioner, konferenser, titlar ...)

  • Awad, Ali Ismail,Luleå tekniska universitet, Datavetenskap(SwePub:ltu) (författare)
  • Khalaf, Ashraf A. M.,Minia University, Egypt(SwePub:) (författare)
  • Hamed, Hesham F. A.,Minia University, Egypt(SwePub:) (författare)

Sammanhörande titlar

  • Ingår i:Building Sustainable Health Ecosystems : 6th International Conference on Well-Being in the Information Society, WIS 2016, Tampere, Finland, September 16-18, 2016, ProceedingsSpringer International Publishing978-3-319-44671-4978-3-319-44672-1s. 151-160

Internetlänk

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy