SwePub
Sök i LIBRIS databas

  Utökad sökning

onr:"swepub:oai:DiVA.org:ltu-59667"
 

Sökning: onr:"swepub:oai:DiVA.org:ltu-59667" > Inequalities for so...

Inequalities for some classes of Hardy type operators and compactness in weighted Lebesgue spaces

Abylayeva, Akbota, (författare)
Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik
Luleå tekniska universitet Institutionen för teknikvetenskap och matematik. (creator_code:org_t)
ISBN 978-91-7583-709-3
2016
Engelska.
Serie: Doctoral thesis / Luleå University of Technology 1 jan 1997 → …, 1402-1544
Läs hela texten (fulltext)
  • Doktorsavhandling (övrigt vetenskapligt)
Abstract Ämnesord
Stäng  
  • This PhD thesis is devoted to investigate weighted differential Hardy inequalities and Hardy-type inequalities with the kernel when the kernel has an integrable singularity, and also the additivity of the estimate of a Hardy type operator with a kernel.The thesis consists of seven papers (Papers 1, 2, 3, 4, 5, 6, 7) and an introduction where a review on the subject of the thesis is given. In Paper 1 weighted differential Hardy type inequalities are investigated on the set of compactly supported smooth functions, where necessary and sufficient conditions on the weight functions are established for which this inequality and two-sided estimates for the best constant hold. In Papers 2, 3, 4 a more general class of <img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?%5Calpha" />-order fractional integrationoperators are considered including the well-known classical Weyl, Riemann-Liouville, Erdelyi-Kober and Hadamard operators. Here 0 &lt; <img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?%5Calpha" /> &lt; 1. In Papers 2 and 3 the boundedness and compactness of two classes of such operators are investigated namely of Weyl and Riemann-Liouville type, respectively, in weighted Lebesgue spaces for 1 &lt; p ≤ q &lt; 1 and 0 &lt; q &lt; p &lt; ∞. As applications some new results for the fractional integration operators of Weyl, Riemann-Liouville, Erdelyi-Kober and Hadamard are given and discussed.In Paper 4 the Riemann-Liouville type operator with variable upper limit is considered. The main results are proved by using a localization method equipped with the upper limit function and the kernel of the operator. In Papers 5 and 6 the Hardy operator with kernel is considered, where the kernel has a logarithmic singularity. The criteria of the boundedness and compactness of the operator in weighted Lebesgue spaces are given for 1 &lt; p ≤ q &lt; ∞ and 0 &lt; q &lt; p &lt; ∞, respectively. In Paper 7 we investigated the weighted additive estimates for integral operators K+ and K¯ defined byK+ ƒ(x) := ∫ k(x,s) ƒ(s)ds,  K¯ ƒ(x) := ∫ k(x,s)ƒ(s)ds.It is assumed that the kernel k of the operators K+and K- belongs to the general Oinarov class. We derived the criteria for the validity of these addittive estimates when 1 ≤ p≤ q &lt; ∞

Ämnesord

NATURVETENSKAP  -- Matematik -- Matematisk analys (hsv//swe)
NATURAL SCIENCES  -- Mathematics -- Mathematical Analysis (hsv//eng)

Nyckelord

Mathematics
Matematik

Publikations- och innehållstyp

dok (ämneskategori)
vet (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Hitta mer i SwePub

Av författaren/redakt...
Abylayeva, Akbot ...
Om ämnet
NATURVETENSKAP
NATURVETENSKAP
och Matematik
och Matematisk analy ...
Delar i serien
Doctoral thesis ...
Av lärosätet
Luleå tekniska universitet

Sök utanför SwePub

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy