SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:umu-16701"
 

Search: onr:"swepub:oai:DiVA.org:umu-16701" > Acyl-based anandami...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Acyl-based anandamide uptake inhibitors cause rapid toxicity to C6 glioma cells at pharmacologically relevant concentrations.

De Lago, Eva (author)
Gustafsson, Sofia B (author)
Umeå universitet,Farmakologi
Fernández-Ruiz, Javier (author)
show more...
Nilsson, Jonas (author)
Umeå universitet,Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet),Nilsson
Jacobsson, Stig O P (author)
Umeå universitet,Farmakologi
Fowler, Christopher J (author)
Umeå universitet,Farmakologi
show less...
 (creator_code:org_t)
2006
2006
English.
In: J Neurochem. - 0022-3042. ; 99:2, s. 677-88
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Compounds blocking the uptake of the endogenous cannabinoid anandamide (AEA) have been used to explore the functions of the endogenous cannabinoid system in the CNS both in vivo and in vitro. In this study, the effects of four commonly used acyl-based uptake inhibitors [N-(4-hydroxyphenyl)arachidonylamide (AM404), N-(4-hydroxy-2-methylphenyl) arachidonoyl amide (VDM11), (5Z,8Z,11Z,14Z)-N-(3-furanylmethyl)-5,8,11,14-eicosatetraenamide (UCM707) and (9Z)-N-[1-((R)-4-hydroxybenzyl)-2-hydroxyethyl]-9-octadecen-amide (OMDM2)] and the related compound arvanil on C6 glioma cell viability were investigated. All five compounds reduced the ability of the cells to accumulate calcein, reduced the total nucleic acid content and increased the activity of lactate dehydrogenase recovered in the cell medium. AM404 (10 microm) and VDM11 (10 microm) acted rapidly, reducing cell viability after 3 h of exposure when cell densities of 5,000 per well were used. In contrast, UCM707 (30 microm), OMDM2 (10 microm) and the related compound arvanil (10 microm) produced a more slowly developing effect on cell viability, although robust effects were seen after 6-9 h of exposure. At higher cell densities, the toxicities of AM404 and UCM707 were reduced. Comparison of the compounds with arachidonic acid, arachidonic acid methyl ester, AEA, arachidonoyl glycine and oleic acid suggested that the toxicity of the arachidonoyl-based compounds was related primarily to the acyl side-chain rather than the head group. A variety of pre-treatments blocking possible metabolic pathways and receptor targets were tested, but the only consistent protective treatment against the effects of these compounds was the antioxidant N-acetyl-L-cysteine. It is concluded that AM404, VDM11, UCM707 and OMDM2 produce a rapid loss of C6 glioma cell viability over the same concentration range as is required for the inhibition of AEA uptake in vitro, albeit with a longer latency. Such effects should be kept in mind when acyl-derived compounds are used to probe the function of the endocannabinoid system in the CNS, particularly in chronic administration protocols.

Keyword

Acylation/drug effects
Animals
Antineoplastic Agents/chemistry/toxicity
Arachidonic Acids/antagonists & inhibitors/chemistry/metabolism/*toxicity
Benzyl Compounds/chemistry/toxicity
Brain/drug effects/metabolism
Brain Neoplasms/*drug therapy/metabolism/physiopathology
Cell Line; Tumor
Cell Proliferation/drug effects
Cell Survival/drug effects/physiology
Cytotoxins/chemistry/*toxicity
Drug Screening Assays; Antitumor
Endocannabinoids/*antagonists & inhibitors/metabolism
Fluoresceins/metabolism
Furans/chemistry/toxicity
Glioma/*drug therapy/metabolism/physiopathology
L-Lactate Dehydrogenase/metabolism
Neurons/drug effects/metabolism
Nucleic Acids/metabolism
Polyunsaturated Alkamides/*antagonists & inhibitors/chemistry/metabolism/toxicity
Rats
TRPV Cation Channels/drug effects/metabolism
Time Factors

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view