SwePub
Sök i LIBRIS databas

  Utökad sökning

onr:"swepub:oai:gup.ub.gu.se/320303"
 

Sökning: onr:"swepub:oai:gup.ub.gu.se/320303" > A stabilized P1 dom...

A stabilized P1 domain decomposition finite element method for time harmonic Maxwell's equations

Asadzadeh, Mohammad, 1952 (författare)
Gothenburg University,Göteborgs universitet,Institutionen för matematiska vetenskaper,Department of Mathematical Sciences,Chalmers tekniska högskola,Chalmers University of Technology
Beilina, Larisa, 1970 (författare)
Gothenburg University,Göteborgs universitet,Institutionen för matematiska vetenskaper,Department of Mathematical Sciences,Chalmers tekniska högskola,Chalmers University of Technology
 (creator_code:org_t)
Elsevier BV, 2023
2023
Engelska.
Ingår i: Mathematics and Computers in Simulation. - : Elsevier BV. - 0378-4754. ; 204, s. 556-574
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • One way of improving the behavior of finite element schemes for classical, time-dependent Maxwell's equations is to render their hyperbolic character to elliptic form. This paper is devoted to the study of a stabilized linear, domain decomposition, finite element method for the time harmonic Maxwell's equations, in a dual form, obtained through the Laplace transformation in time. The model problem is for the particular case of the dielectric permittivity function which is assumed to be constant in a boundary neighborhood. The discrete problem is coercive in a symmetrized norm, equivalent to the discrete norm of the model problem. This yields discrete stability, which together with continuity guarantees the well-posedness of the discrete problem, cf Arnold et al. (2002) [3], Di Pietro and Ern (2012) [45]. The convergence is addressed both in a priori and a posteriori settings. In the a priori error estimates we confirm the theoretical convergence of the scheme in a L2-based, gradient dependent, triple norm. The order of convergence is O(h) in weighted Sobolev space Hw2(ohm), and hence optimal. Here, the weight w := w(epsilon, s) where epsilon is the dielectric permittivity function and s is the Laplace transformation variable. We also derive, similar, optimal a posteriori error estimates controlled by a certain, weighted, norm of the residuals of the computed solution over the domain and at the boundary (involving the relevant jump terns) and hence independent of the unknown exact solution. The a posteriori approach is used, e.g. in constructing adaptive algorithms for the computational purposes, which is the subject of a forthcoming paper. Finally, through implementing several numerical examples, we validate the robustness of the proposed scheme. (c) 2022 The Author(s). Published by Elsevier B.V. on behalf of International Association for Mathematics and Computers in Simulation (IMACS). This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Ämnesord

NATURVETENSKAP  -- Matematik -- Beräkningsmatematik (hsv//swe)
NATURAL SCIENCES  -- Mathematics -- Computational Mathematics (hsv//eng)
SAMHÄLLSVETENSKAP  -- Ekonomi och näringsliv -- Nationalekonomi (hsv//swe)
SOCIAL SCIENCES  -- Economics and Business -- Economics (hsv//eng)
SAMHÄLLSVETENSKAP  -- Ekonomi och näringsliv -- Företagsekonomi (hsv//swe)
SOCIAL SCIENCES  -- Economics and Business -- Business Administration (hsv//eng)
NATURVETENSKAP  -- Data- och informationsvetenskap -- Datavetenskap (hsv//swe)
NATURAL SCIENCES  -- Computer and Information Sciences -- Computer Sciences (hsv//eng)

Nyckelord

Time harmonic Maxwell?s equations
P1 finite elements
Stability
A
priori estimate
A posteriori estimate
Convergence
discontinuous galerkin methods
Computer Science
Mathematics
A posteriori estimate

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy