SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Boone C. D.) srt2:(2005-2009)"

Sökning: WFRF:(Boone C. D.) > (2005-2009)

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Kerzenmacher, T., et al. (författare)
  • Validation of NO2 and NO from the Atmospheric Chemistry Experiment (ACE)
  • 2008
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 8:19, s. 5801--5841-
  • Tidskriftsartikel (refereegranskat)abstract
    • Vertical profiles of NO2 and NO have been obtained from solar occultation measurements by the Atmospheric Chemistry Experiment (ACE), using an infrared Fourier Transform Spectrometer (ACE-FTS) and (for NO2) an ultraviolet-visible-near-infrared spectrometer, MAESTRO (Measurement of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation). In this paper, the quality of the ACE-FTS version 2.2 NO2 and NO and the MAESTRO version 1.2 NO2 data are assessed using other solar occultation measurements (HALOE, SAGE II, SAGE III, POAM III, SCIAMACHY), stellar occultation measurements (GOMOS), limb measurements (MIPAS, OSIRIS), nadir measurements (SCIAMACHY), balloon-borne measurements (SPIRALE, SAOZ) and ground-based measurements (UV-VIS, FTIR). Time differences between the comparison measurements were reduced using either a tight coincidence criterion, or where possible, chemical box models. ACE-FTS NO2 and NO and the MAESTRO NO2 are generally consistent with the correlative data. The ACE-FTS and MAESTRO NO2 volume mixing ratio (VMR) profiles agree with the profiles from other satellite data sets to within about 20% between 25 and 40 km, with the exception of MIPAS ESA (for ACE-FTS) and SAGE II (for ACE-FTS (sunrise) and MAESTRO) and suggest a negative bias between 23 and 40 km of about 10%. MAESTRO reports larger VMR values than the ACE-FTS. In comparisons with HALOE, ACE-FTS NO VMRs typically (on average) agree to ±8% from 22 to 64 km and to +10% from 93 to 105 km, with maxima of 21% and 36%, respectively. Partial column comparisons for NO2 show that there is quite good agreement between the ACE instruments and the FTIRs, with a mean difference of +7.3% for ACE-FTS and +12.8% for MAESTRO.
  •  
3.
  • Wolff, M.A., et al. (författare)
  • Validation of HNO3, ClONO2 and N2O5 from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS)
  • 2008
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 8:13, s. 3529-3562
  • Tidskriftsartikel (refereegranskat)abstract
    • The Atmospheric Chemistry Experiment (ACE) satellite was launched on 12 August 2003. Its two instruments measure vertical profiles of over 30 atmospheric trace gases by analyzing solar occultation spectra in the ultraviolet/visible and infrared wavelength regions. The reservoir gases HNO3, ClONO2, and N2O5 are three of the key species provided by the primary instrument, the ACE Fourier Transform Spectrometer (ACE-FTS). This paper describes the ACE-FTS version 2.2 data products, including the N2O5 update, for the three species and presents validation comparisons with available observations. We have compared volume mixing ratio (VMR) profiles of HNO3, ClONO2, and N2O5 with measurements by other satellite instruments (SMR, MLS, MIPAS), aircraft measurements (ASUR), and single balloon-flights (SPIRALE, FIRS-2). Partial columns of HNO3 and ClONO2 were also compared with measurements by ground-based Fourier Transform Infrared (FTIR) spectrometers. Overall the quality of the ACE-FTS v2.2 HNO3 VMR profiles is good from 18 to 35 km. For the statistical satellite comparisons, the mean absolute differences are generally within ±1 ppbv ±20%) from 18 to 35 km. For MIPAS and MLS comparisons only, mean relative differences lie within±10% between 10 and 36 km. ACE-FTS HNO3 partial columns (~15–30 km) show a slight negative bias of −1.3% relative to the ground-based FTIRs at latitudes ranging from 77.8° S–76.5° N. Good agreement between ACE-FTS ClONO2 and MIPAS, using the Institut für Meteorologie und Klimaforschung and Instituto de Astrofísica de Andalucía (IMK-IAA) data processor is seen. Mean absolute differences are typically within ±0.01 ppbv between 16 and 27 km and less than +0.09 ppbv between 27 and 34 km. The ClONO2 partial column comparisons show varying degrees of agreement, depending on the location and the quality of the FTIR measurements. Good agreement was found for the comparisons with the midlatitude Jungfraujoch partial columns for which the mean relative difference is 4.7%. ACE-FTS N2O5 has a low bias relative to MIPAS IMK-IAA, reaching −0.25 ppbv at the altitude of the N2O5 maximum (around 30 km). Mean absolute differences at lower altitudes (16–27 km) are typically −0.05 ppbv for MIPAS nighttime and ±0.02 ppbv for MIPAS daytime measurements.
  •  
4.
  • Carleer, M. R., et al. (författare)
  • Validation of water vapour profiles from the Atmospheric Chemistry Experiment (ACE)
  • 2008
  • Ingår i: Atmospheric Chemistry and Physics Discussion: An Interactive Open Access Journal of the European Geosciences Union. ; 8:2, s. 4499-4559
  • Tidskriftsartikel (refereegranskat)abstract
    • The Atmospheric Chemistry Experiment (ACE) mission was launched in August 2003 to sound the atmosphere by solar occultation. Water vapour (H2O), one of the most important molecules for climate and atmospheric chemistry, is one of the key species provided by the two principal instruments, the infrared Fourier Transform Spectrometer (ACE-FTS) and the MAESTRO UV-Visible spectrometer (ACE-MAESTRO). The first instrument performs measurements on several lines in the 1362–2137 cm−1 range, from which vertically resolved H2O concentration profiles are retrieved, from 7 to 90 km altitude. ACE-MAESTRO measures profiles using the water absorption band in the near infrared part of the spectrum at 926.0–969.7 nm. This paper presents a comprehensive validation of the ACE-FTS profiles. We have compared the H2O volume mixing ratio profiles with space-borne (SAGE II, HALOE, POAM III, MIPAS, SMR) observations and measurements from balloon-borne frostpoint hygrometers and a ground based lidar. We show that the ACE-FTS measurements provide H2O profiles with small retrieval uncertainties in the stratosphere (better than 5% from 15 to 70 km, gradually increasing above). The situation is unclear in the upper troposphere, due mainly to the high variability of the water vapour volume mixing ratio in this region. A new water vapour data product from the ACE-MAESTRO (Measurement of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation) is also presented and initial comparisons with ACE-FTS are discussed.
  •  
5.
  • Lambert, A., et al. (författare)
  • Validation of the Aura Microwave Limb Sounder middle atmosphere water vapor and nitrous oxide measurements
  • 2007
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 112:D24
  • Tidskriftsartikel (refereegranskat)abstract
    • The quality of the version 2.2 (v2.2) middle atmosphere water vapor and nitrous oxide measurements from the Microwave Limb Sounder (MLS) on the Earth Observing System (EOS) Aura satellite is assessed. The impacts of the various sources of systematic error are estimated by a comprehensive set of retrieval simulations. Comparisons with correlative data sets from ground-based, balloon and satellite platforms operating in the UV/ visible, infrared and microwave regions of the spectrum are performed. Precision estimates are also validated, and recommendations are given on the data usage. The v2.2 H 2 O data have been improved over v1.5 by providing higher vertical resolution in the lower stratosphere and better precision above the stratopause. The single-profile precision is ∼0.2-0.3 ppmv (4-9%), and the vertical resolution is ∼3-4 km in the stratosphere. The precision and vertical resolution become worse with increasing height above the stratopause. Over the pressure range 0.1-0.01 hPa the precision degrades from 0.4 to 1.1 ppmv (6-34%), and the vertical resolution degrades to ∼12-16 km. The accuracy is estimated to be 0.2-0.5 ppmv (4-11%) for the pressure range 68-0.01 hPa. The scientifically useful range of the H 2 O data is from 316 to 0.002 hPa, although only the 82-0.002 hPa pressure range is validated here. Substantial improvement has been achieved in the v2.2 N 2 O data over v1.5 by reducing a significant low bias in the stratosphere and eliminating unrealistically high biased mixing ratios in the polar regions. The single-profile precision is ∼13-25 ppbv (7-38%), the vertical resolution is ∼4-6 km and the accuracy is estimated to be 3-70 ppbv (9-25%) for the pressure range 100-4.6 hPa. The scientifically useful range of the N 2 O data is from 100 to 1 hPa. Copyright 2007 by the American Geophysical Union.
  •  
6.
  • Clerbaux, C., et al. (författare)
  • CO measurements from the ACE-FTS satellite instrument: data analysis and validation using ground-based, airborne and spaceborne observations
  • 2008
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 8, s. 2569-2594
  • Tidskriftsartikel (refereegranskat)abstract
    • The Atmospheric Chemistry Experiment (ACE) mission was launched in August 2003 to sound the atmosphere by solar occultation. Carbon monoxide (CO), a good tracer of pollution plumes and atmospheric dynamics, is one of the key species provided by the primary instrument, the ACE-Fourier Transform Spectrometer (ACE-FTS). This instrument performs measurements in both the CO 1-0 and 2-0 ro-vibrational bands, from which vertically resolved CO concentration profiles are retrieved, from the mid-troposphere to the thermosphere. This paper presents an updated description of the ACE-FTS version 2.2 CO data product, along with a comprehensive validation of these profiles using available observations (February 2004 to December 2006). We have compared the CO partial columns with ground-based measurements using Fourier transform infrared spectroscopy and millimeter wave radiometry, and the volume mixing ratio profiles with airborne (both high-altitude balloon flight and airplane) observations. CO satellite observations provided by nadir-looking instruments (MOPITT and TES) as well as limb-viewing remote sensors (MIPAS, SMR and MLS) were also compared with the ACE-FTS CO products. We show that the ACE-FTS measurements provide CO profiles with small retrieval errors (better than 5% from the upper troposphere to 40 km, and better than 10% above). These observations agree well with the correlative measurements, considering the rather loose coincidence criteria in some cases. Based on the validation exercise we assess the following uncertainties to the ACE-FTS measurement data: better than 15% in the upper troposphere (8–12 km), than 30% in the lower stratosphere (12–30 km), and than 25% from 30 to 100 km.
  •  
7.
  • Sioris, C. E., et al. (författare)
  • Vertical profiles of lightning-produced NO2 enhancements in the upper troposphere observed by OSIRIS
  • 2007
  • Ingår i: Atmospheric Chemistry and Physics. - 1680-7316 .- 1680-7324. ; 7:16, s. 4281-4294
  • Tidskriftsartikel (refereegranskat)abstract
    • The purpose of this study is to perform a global search of the upper troposphere (z >= 10 km) for enhancements of nitrogen dioxide and determine their sources. This is the first application of satellite-based limb scattering to study upper tropospheric NO2. We have searched two years ( May 2003 - May 2005) of OSIRIS ( Optical Spectrograph and Infrared Imager System) operational NO2concentrations ( version 2.3/ 2.4) to find large enhancements in the observations by comparing with photochemical box model calculations and by identifying local maxima in NO2 volume mixing ratio. We find that lightning is the main production mechanism responsible for the large enhancements in OSIRIS NO2 observations as expected. Similar patterns in the abundances and spatial distribution of the NO2 enhancements are obtained by perturbing the lightning within the GEOS- Chem 3- dimensional chemical transport model. In most cases, the presence of lightning is confirmed with coincident imagery from LIS ( Lightning Imaging Sensor) and the spatial extent of the NO2 enhancement is mapped using nadir observations of tropospheric NO2 at high spatial resolution from SCIAMACHY ( Scanning Imaging Absorption Spectrometer for Atmospheric Chartography) and OMI ( Ozone Monitoring Instrument). The combination of the lightning and chemical sensors allows us to investigate globally the role of lightning to the abundance of NO2 in the upper troposphere ( UT). Lightning contributes 60% of the tropical upper tropospheric NO2 in GEOS- Chem simulations. The spatial and temporal distribution of NO2 enhancements from lightning ( Maylyzed.
  •  
8.
  • Strong, K., et al. (författare)
  • Validation of ACE-FTS N2O measurements
  • 2008
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 8, s. 4759-4786
  • Tidskriftsartikel (refereegranskat)abstract
    • The Atmospheric Chemistry Experiment (ACE), also known as SCISAT, was launched on 12 August 2003, carrying two instruments that measure vertical profiles of atmospheric constituents using the solar occultation technique. One of these instruments, the ACE Fourier Transform Spectrometer (ACE-FTS), is measuring volume mixing ratio (VMR) profiles of nitrous oxide (N2O) from the upper troposphere to the lower mesosphere at a vertical resolution of about 3–4 km. In this study, the quality of the ACE-FTS version 2.2 N2O data is assessed through comparisons with coincident measurements made by other satellite, balloon-borne, aircraft, and ground-based instruments. These consist of vertical profile comparisons with the SMR, MLS, and MIPAS satellite instruments, multiple aircraft flights of ASUR, and single balloon flights of SPIRALE and FIRS-2, and partial column comparisons with a network of ground-based Fourier Transform InfraRed spectrometers (FTIRs). Between 6 and 30 km, the mean absolute differences for the satellite comparisons lie between −42 ppbv and +17 ppbv, with most within ±20 ppbv. This corresponds to relative deviations from the mean that are within ±15%, except for comparisons with MIPAS near 30 km, for which they are as large as 22.5%. Between 18 and 30 km, the mean absolute differences for the satellite comparisons are generally within ±10 ppbv. From 30 to 60 km, the mean absolute differences are within ±4 ppbv, and are mostly between −2 and +1 ppbv. Given the small N2O VMR in this region, the relative deviations from the mean are therefore large at these altitudes, with most suggesting a negative bias in the ACE-FTS data between 30 and 50 km. In the comparisons with the FTIRs, the mean relative differences between the ACE-FTS and FTIR partial columns (which cover a mean altitude range of 14 to 27 km) are within ±5.6% for eleven of the twelve contributing stations. This mean relative difference is negative at ten stations, suggesting a small negative bias in the ACE-FTS partial columns over the altitude regions compared. Excellent correlation (R=0.964) is observed between the ACE-FTS and FTIR partial columns, with a slope of 1.01 and an intercept of −0.20 on the line fitted to the data.
  •  
9.
  • Nassar, R., et al. (författare)
  • A global inventory of stratospheric chlorine in 2004
  • 2006
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 111:22
  • Tidskriftsartikel (refereegranskat)abstract
    • Total chlorine (CITOT) in the stratosphere has been determined using the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) measurements of HCl, ClONO2, CH3Cl, CCl4, CCl3F (CFC-11), CCl2F2 (CFC-12), CHClF2 (HCFC-22), CCl2FCClF2 (CFC-113), CH3CClF2 (HCFC-142b), COClF, and ClO supplemented by data from several other sources, including both measurements and models. Separate chlorine inventories were carried out in five latitude zones (60°-82°N, 30°-60°N, 30°S-30°N, 30°-60°S, and 60°-82°S), averaging the period of February 2004 to January 2005 inclusive, when possible, to deal with seasonal variations. The effect of diurnal variation was avoided by only using measurements taken at local sunset. Mean stratospheric ClTOT values of 3.65 ppbv were determined for both the northern and southern midlatitudes (with an estimated 1σ, accuracy of ±0.13 ppbv and a precision of ±.09 ppbv), accompanied by a slightly lower value in the tropics and slightly higher values at high latitudes. Stratospheric ClTOT profiles in all five latitude zones are nearly linear with a slight positive slope in ppbv /km. Both the observed slopes and pattern of latitudinal variation can be interpreted as evidence of the beginning of a decline in global stratospheric chlorine, which is qualitatively consistent with the mean stratospheric circulation pattern and time lag necessary for transport.
  •  
10.
  • Santee, M.L., et al. (författare)
  • Validation of the Aura Microwave Limb Sounder HNO3 Measurements
  • 2007
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 112:D24
  • Tidskriftsartikel (refereegranskat)abstract
    • [1] We assess the quality of the version 2.2 (v2.2) HNO(3) measurements from the Microwave Limb Sounder (MLS) on the Earth Observing System Aura satellite. The MLS HNO(3) product has been greatly improved over that in the previous version (v1.5), with smoother profiles, much more realistic behavior at the lowest retrieval levels, and correction of a high bias caused by an error in one of the spectroscopy files used in v1.5 processing. The v2.2 HNO(3) data are scientifically useful over the range 215 to 3.2 hPa, with single-profile precision of similar to 0.7 ppbv throughout. Vertical resolution is 3-4 km in the upper troposphere and lower stratosphere, degrading to similar to 5 km in the middle and upper stratosphere. The impact of various sources of systematic uncertainty has been quantified through a comprehensive set of retrieval simulations. In aggregate, systematic uncertainties are estimated to induce in the v2.2 HNO(3) measurements biases that vary with altitude between +/- 0.5 and +/- 2 ppbv and multiplicative errors of +/- 5-15% throughout the stratosphere, rising to similar to +/- 30% at 215 hPa. Consistent with this uncertainty analysis, comparisons with correlative data sets show that relative to HNO(3) measurements from ground- based, balloon- borne, and satellite instruments operating in both the infrared and microwave regions of the spectrum, MLS v2.2 HNO(3) mixing ratios are uniformly low by 10-30% throughout most of the stratosphere. Comparisons with in situ measurements made from the DC-8 and WB-57 aircraft in the upper troposphere and lowermost stratosphere indicate that the MLS HNO(3) values are low in this region as well, but are useful for scientific studies (with appropriate averaging).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy