SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1680 7316 "

Sökning: L773:1680 7316

  • Resultat 271-280 av 595
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
271.
  • Kulmala, M., et al. (författare)
  • General overview: European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI) - integrating aerosol research from nano to global scales
  • 2011
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 11:24, s. 13061-13143
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper we describe and summarize the main achievements of the European Aerosol Cloud Climate and Air Quality Interactions project (EUCAARI). EUCAARI started on 1 January 2007 and ended on 31 December 2010 leaving a rich legacy including: (a) a comprehensive database with a year of observations of the physical, chemical and optical properties of aerosol particles over Europe, (b) comprehensive aerosol measurements in four developing countries, (c) a database of airborne measurements of aerosols and clouds over Europe during May 2008, (d) comprehensive modeling tools to study aerosol processes fron nano to global scale and their effects on climate and air quality. In addition a new Pan-European aerosol emissions inventory was developed and evaluated, a new cluster spectrometer was built and tested in the field and several new aerosol parameterizations and computations modules for chemical transport and global climate models were developed and evaluated. These achievements and related studies have substantially improved our understanding and reduced the uncertainties of aerosol radiative forcing and air quality-climate interactions. The EUCAARI results can be utilized in European and global environmental policy to assess the aerosol impacts and the corresponding abatement strategies.
  •  
272.
  • Kulmala, M., et al. (författare)
  • Introduction : The Pan-Eurasian Experiment (PEEX) - multidisciplinary, multiscale and multicomponent research and capacity-building initiative
  • 2015
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 15:22, s. 13085-13096
  • Tidskriftsartikel (refereegranskat)abstract
    • The Pan-Eurasian Experiment (PEEX) is a multidisciplinary, multiscale and multicomponent research, research infrastructure and capacity-building program. PEEX has originated from a bottom-up approach by the science communities and is aiming at resolving the major uncertainties in Earth system science and global sustainability issues concerning the Arctic and boreal pan-Eurasian regions, as well as China. The vision of PEEX is to solve interlinked, global grand challenges influencing human well-being and societies in northern Eurasia and China. Such challenges include climate change; air quality; biodiversity loss; urbanization; chemicalization; food and freshwater availability; energy production; and use of natural resources by mining, industry, energy production and transport sectors. Our approach is integrative and supra-disciplinary, recognizing the important role of the Arctic and boreal ecosystems in the Earth system. The PEEX vision includes establishing and maintaining long-term, coherent and coordinated research activities as well as continuous, comprehensive research and educational infrastructure and related capacity-building across the PEEX domain. In this paper we present the PEEX structure and summarize its motivation, objectives and future outlook.
  •  
273.
  • Kulmala, M., et al. (författare)
  • Introduction: European Integrated Project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI) : integrating aerosol research from nano to global scales
  • 2009
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 9, s. 2825-2841
  • Tidskriftsartikel (refereegranskat)abstract
    • The European Aerosol Cloud Climate and Air Quality Interactions project EUCAARI is an EU Research Framework 6 integrated project focusing on understanding the interactions of climate and air pollution. EUCAARI works in an integrative and multidisciplinary way from nano-to global scale. EUCAARI brings together several leading European research groups, state-of-the-art infrastructure and some key scientists from third countries to investigate the role of aerosol on climate and air quality. Altogether 48 partners from 25 countries are participating in EUCAARI. During the first 16 months EUCAARI has built operational systems, e. g. established pan-European measurement network for Lagrangian studies and four stations in developing countries. Also an improved understanding of nanoscale processes (like nucleation) has been implemented in global models. Here we present the research methods, organisation, operations and first results of EUCAARI.
  •  
274.
  • Kulmala, Markku, et al. (författare)
  • Opinion : The strength of long-term comprehensive observations to meet multiple grand challenges in different environments and in the atmosphere
  • 2023
  • Ingår i: Atmospheric Chemistry And Physics. - 1680-7316 .- 1680-7324. ; 23:23, s. 14949-14971
  • Tidskriftsartikel (refereegranskat)abstract
    • To be able to meet global grand challenges (climate change; biodiversity loss; environmental pollution; scarcity of water, food and energy supplies; acidification; deforestation; chemicalization; pandemics), which all are closely interlinked with each other, we need comprehensive open data with proper metadata, along with open science. The large data sets from ground-based in situ observations, ground and satellite remote sensing, and multiscale modeling need to be utilized seamlessly. In this opinion paper, we demonstrate the power of the SMEAR (Station for Measuring Earth surface-Atmosphere Relations) concept via several examples, such as detection of new particle formation and the particles' subsequent growth, quantifying atmosphere-ecosystem feedback loops, and combining comprehensive observations with emergency science and services, as well as studying the effect of COVID-19 restrictions on different air quality and climate variables. The future needs and the potential of comprehensive observations of the environment are summarized.
  •  
275.
  • Kuma, Peter, et al. (författare)
  • Machine learning of cloud types in satellite observations and climate models
  • 2023
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 23:1, s. 523-549
  • Tidskriftsartikel (refereegranskat)abstract
    • Uncertainty in cloud feedbacks in climate models is a major limitation in projections of future climate. Therefore, evaluation and improvement of cloud simulation are essential to ensure the accuracy of climate models. We analyse cloud biases and cloud change with respect to global mean near-surface temperature (GMST) in climate models relative to satellite observations and relate them to equilibrium climate sensitivity, transient climate response and cloud feedback. For this purpose, we develop a supervised deep convolutional artificial neural network for determination of cloud types from low-resolution (2.5∘×2.5∘) daily mean top-of-atmosphere shortwave and longwave radiation fields, corresponding to the World Meteorological Organization (WMO) cloud genera recorded by human observers in the Global Telecommunication System (GTS). We train this network on top-of-atmosphere radiation retrieved by the Clouds and the Earth’s Radiant Energy System (CERES) and GTS and apply it to the Coupled Model Intercomparison Project Phase 5 and 6 (CMIP5 and CMIP6) model output and the European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis version 5 (ERA5) and the Modern-Era Retrospective Analysis for Research and Applications version 2 (MERRA-2) reanalyses. We compare the cloud types between models and satellite observations. We link biases to climate sensitivity and identify a negative linear relationship between the root mean square error of cloud type occurrence derived from the neural network and model equilibrium climate sensitivity (ECS), transient climate response (TCR) and cloud feedback. This statistical relationship in the model ensemble favours models with higher ECS, TCR and cloud feedback. However, this relationship could be due to the relatively small size of the ensemble used or decoupling between present-day biases and future projected cloud change. Using the abrupt-4×CO2 CMIP5 and CMIP6 experiments, we show that models simulating decreasing stratiform and increasing cumuliform clouds tend to have higher ECS than models simulating increasing stratiform and decreasing cumuliform clouds, and this could also partially explain the association between the model cloud type occurrence error and model ECS.
  •  
276.
  • Kumar, Varun, et al. (författare)
  • Highly time-resolved chemical speciation and source apportionment of organic aerosol components in Delhi, India, using extractive electrospray ionization mass spectrometry
  • 2022
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 22:11, s. 7739-7761
  • Tidskriftsartikel (refereegranskat)abstract
    • In recent years, the Indian capital city of Delhi has been impacted by very high levels of air pollution, especially during winter. Comprehensive knowledge of the composition and sources of the organic aerosol (OA), which constitutes a substantial fraction of total particulate mass (PM) in Delhi, is central to formulating effective public health policies. Previous source apportionment studies in Delhi identified key sources of primary OA (POA) and showed that secondary OA (SOA) played a major role but were unable to resolve specific SOA sources. We address the latter through the first field deployment of an extractive electrospray ionization time-of-flight mass spectrometer (EESI-TOF) in Delhi, together with a high-resolution aerosol mass spectrometer (AMS). Measurements were conducted during the winter of 2018/19, and positive matrix factorization (PMF) was used separately on AMS and EESI-TOF datasets to apportion the sources of OA. AMS PMF analysis yielded three primary and two secondary factors which were attributed to hydrocarbon-like OA (HOA), biomass burning OA (BBOA-1 and BBOA-2), more oxidized oxygenated OA (MO-OOA), and less oxidized oxygenated OA (LO-OOA). On average, 40 % of the total OA mass was apportioned to the secondary factors. The SOA contribution to total OA mass varied greatly between the daytime (76.8 %, 10:00–16:00 local time (LT)) and nighttime (31.0 %, 21:00–04:00 LT). The higher chemical resolution of EESI-TOF data allowed identification of individual SOA sources. The EESI-TOF PMF analysis in total yielded six factors, two of which were primary factors (primary biomass burning and cooking-related OA). The remaining four factors were predominantly of secondary origin: aromatic SOA, biogenic SOA, aged biomass burning SOA, and mixed urban SOA. Due to the uncertainties in the EESI-TOF ion sensitivities, mass concentrations of EESI-TOF SOA-dominated factors were related to the total AMS SOA (i.e. MO-OOA + LO-OOA) by multiple linear regression (MLR). Aromatic SOA was the major SOA component during the daytime, with a 55.2 % contribution to total SOA mass (42.4 % contribution to total OA). Its contribution to total SOA, however, decreased to 25.4 % (7.9 % of total OA) during the nighttime. This factor was attributed to the oxidation of light aromatic compounds emitted mostly from traffic. Biogenic SOA accounted for 18.4 % of total SOA mass (14.2 % of total OA) during the daytime and 36.1 % of total SOA mass (11.2 % of total OA) during the nighttime. Aged biomass burning and mixed urban SOA accounted for 15.2 % and 11.0 % of total SOA mass (11.7 % and 8.5 % of total OA mass), respectively, during the daytime and 15.4 % and 22.9 % of total SOA mass (4.8 % and 7.1 % of total OA mass), respectively, during the nighttime. A simple dilution–partitioning model was applied on all EESI-TOF factors to estimate the fraction of observed daytime concentrations resulting from local photochemical production (SOA) or emissions (POA). Aromatic SOA, aged biomass burning, and mixed urban SOA were all found to be dominated by local photochemical production, likely from the oxidation of locally emitted volatile organic compounds (VOCs). In contrast, biogenic SOA was related to the oxidation of diffuse regional emissions of isoprene and monoterpenes. The findings of this study show that in Delhi, the nighttime high concentrations are caused by POA emissions led by traffic and biomass burning and the daytime OA is dominated by SOA, with aromatic SOA accounting for the largest fraction. Because aromatic SOA is possibly more toxic than biogenic SOA and primary OA, its dominance during the daytime suggests an increased OA toxicity and health-related consequences for the general public.
  •  
277.
  • Kupiszewski, Pjotr, et al. (författare)
  • Vertical profiling of aerosol particles and trace gases over the central Arctic Ocean during summer
  • 2013
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 13:24, s. 12405-12431
  • Tidskriftsartikel (refereegranskat)abstract
    • Unique measurements of vertical size-resolved aerosol particle concentrations, trace gas concentrations and meteorological data were obtained during the Arctic Summer Cloud Ocean Study (ASCOS, www.ascos.se), an International Polar Year project aimed at establishing the processes responsible for formation and evolution of low-level clouds over the high Arctic summer pack ice. The experiment was conducted from on board the Swedish icebreaker Oden, and provided both ship-and helicopter-based measurements. This study focuses on the vertical helicopter profiles and onboard measurements obtained during a three-week period when Oden was anchored to a drifting ice floe, and sheds light on the characteristics of Arctic aerosol particles and their distribution throughout the lower atmosphere. Distinct differences in aerosol particle characteristics within defined atmospheric layers are identified. Within the lowermost couple hundred metres, transport from the marginal ice zone (MIZ), condensational growth and cloud processing develop the aerosol population. During two of the four representative periods defined in this study, such influence is shown. At altitudes above about 1 km, long-range transport occurs frequently. However, only infrequently does large-scale subsidence descend such air masses to become entrained into the mixed layer in the high Arctic, and there-fore long-range transport plumes are unlikely to directly influence low-level stratiform cloud formation. Nonetheless, such plumes can influence the radiative balance of the planetary boundary layer (PBL) by influencing formation and evolution of higher clouds, as well as through precipitation transport of particles downwards. New particle formation was occasionally observed, particularly in the near-surface layer. We hypothesize that the origin of these ultrafine particles could be in biological processes, both primary and secondary, within the open leads between the pack ice and/or along the MIZ. In general, local sources, in combination with upstream boundary-layer transport of precursor gases from the MIZ, are considered to constitute the origin of cloud condensation nuclei (CCN) particles and thus be of importance for the formation of interior Arctic low-level clouds during summer, and subsequently, through cloud influences, for the melting and freezing of sea ice.
  •  
278.
  • Kyro, E. -M, et al. (författare)
  • Trends in new particle formation in eastern Lapland, Finland : effect of decreasing sulfur emissions from Kola Peninsula
  • 2014
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 14:9, s. 4383-4396
  • Tidskriftsartikel (refereegranskat)abstract
    • The smelter industry in Kola Peninsula is the largest source of anthropogenic SO2 in the Arctic part of Europe and one of the largest within the Arctic domain. Due to socio-economic changes in Russia, the emissions have been decreasing especially since the late 1990s resulting in decreased SO2 concentrations close to Kola in eastern Lapland, Finland. At the same time, the frequency of new particle formation days has been decreasing distinctively at SMEAR I station in eastern Lapland, especially during spring and autumn. We show that sulfur species, namely sulfur dioxide and sulfuric acid, have an important role in both new particle formation and subsequent growth and that the decrease in new particle formation days is a result of the reduction of sulfur emissions originating from Kola Peninsula. In addition to sulfur species, there are many other quantities, such as formation rate of aerosol particles, condensation sink and nucleation mode particle number concentration, which are related to the number of observed new particle formation (NPF) days and need to be addressed when linking sulfur emissions and NPF. We show that while most of these quantities exhibit statistically significant trends, the reduction in Kola sulfur emissions is the most obvious reason for the rapid decline in NPF days. Sulfuric acid explains approximately 20-50% of the aerosol condensational growth observed at SMEAR I, and there is a large seasonal variation with highest values obtained during spring and autumn. We found that (i) particles form earlier after sunrise during late winter and early spring due to high concentrations of SO2 and H2SO4; (ii) several events occurred during the absence of light, and they were connected to higher than average concentrations of SO2; and (iii) high SO2 concentrations could advance the onset of nucleation by several hours. Moreover, air masses coming over Kola Peninsula seemed to favour new particle formation.
  •  
279.
  • Laaksonen, A., et al. (författare)
  • The role of VOC oxidation products in continental new particle formation
  • 2008
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 8:10, s. 2657-2665
  • Tidskriftsartikel (refereegranskat)abstract
    • Aerosol physical and chemical properties and trace gas concentrations were measured during the QUEST field campaign in March-April 2003, in Hyytiala, Finland. Our aim was to understand the role of oxidation products of VOC's such as mono- and sesquiterpenes in atmospheric nucleation events. Particle chemical compositions were measured using the Aerodyne Aerosol Mass Spectrometer, and chemical compositions of aerosol samples collected with low-pressure impactors and a high volume sampler were analysed using a number of techniques. The results indicate that during and after new particle formation, all particles larger than 50 nm in diameter contained similar organic substances that are likely to be mono- and sesquiterpene oxidation products. The oxidation products identified in the high volume samples were shown to be mostly aldehydes. In order to study the composition of particles in the 10-50 nm range, we made use of Tandem Differential Mobility Analyzer results. We found that during nucleation events, both 10 and 50 nm particle growth factors due to uptake of ethanol vapour correlate strongly with gas-phase monoterpene oxidation product (MTOP) concentrations, indicating that the organic constituents of particles smaller than 50 nm in diameter are at least partly similar to those of larger particles. We furthermore showed that particle growth rates during the nucleation events are correlated with the gas-phase MTOP concentrations. This indicates that VOC oxidation products may have a key role in determining the spatial and temporal features of the nucleation events. This conclusion was supported by our aircraft measurements of new 3-10 nm particle concentrations, which showed that the nucleation event on 28 March 2003, started at the ground layer, i.e. near the VOC source, and evolved together with the mixed layer. Furthermore, no new particle formation was detected upwind away from the forest, above the frozen Gulf of Bothnia.
  •  
280.
  • Lacher, Larissa, et al. (författare)
  • The Puy de Dôme ICe Nucleation Intercomparison Campaign (PICNIC): comparison between online and offline methods in ambient air
  • 2024
  • Ingår i: ATMOSPHERIC CHEMISTRY AND PHYSICS. - 1680-7316 .- 1680-7324. ; 24:4, s. 2651-2678
  • Tidskriftsartikel (refereegranskat)abstract
    • Ice crystal formation in mixed-phase clouds is initiated by specific aerosol particles, termed ice-nucleating particles (INPs). Only a tiny fraction of all aerosol particles are INPs, providing a challenge for contemporary INP measurement techniques. Models have shown that the presence of INPs in clouds can impact their radiative properties and induce precipitation formation. However, for a qualified implementation of INPs in models, measurement techniques able to accurately detect the temperature-dependent INP concentration are needed. Here we present measurements of INP concentrations in ambient air under conditions relevant to mixed-phase clouds from a total of 10 INP methods over 2 weeks in October 2018 at the Puy de Dome observatory in central France. A special focus in this intercomparison campaign was placed on having overlapping sampling periods. Although a variety of different measurement principles were used, the majority of the data show INP concentrations within a factor of 5 of one another, demonstrating the suitability of the instruments to derive model-relevant INP data.Lower values of comparability are likely due to instrument-specific features such as aerosol lamina spreading in continuous-flow diffusion chambers, demonstrating the need to account for such phenomena when interpreting INP concentration data from online instruments. Moreover, consistently higher INP concentrations were observed from aerosol filters collected on the rooftop at the Puy de Dome station without the use of an aerosol inlet.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 271-280 av 595
Typ av publikation
tidskriftsartikel (588)
forskningsöversikt (7)
Typ av innehåll
refereegranskat (595)
Författare/redaktör
Krejci, Radovan (48)
Murtagh, Donal, 1959 (37)
Tunved, Peter (36)
Kulmala, M (35)
Riipinen, Ilona (34)
Kulmala, Markku (33)
visa fler...
Simpson, David, 1961 (30)
Swietlicki, Erik (29)
Urban, Joachim, 1964 (27)
Ström, Johan (26)
Hallquist, Mattias, ... (25)
Leck, Caroline (24)
Hansson, Hans-Christ ... (21)
Ekman, Annica M. L. (21)
Mohr, Claudia (21)
Eriksson, Patrick, 1 ... (19)
Tjernström, Michael (17)
Petaja, T. (17)
Roldin, Pontus (16)
Baltensperger, Urs (16)
Petäjä, Tuukka (16)
Zieger, Paul (15)
Mellqvist, Johan, 19 ... (15)
Wiedensohler, Alfred (15)
Kristensson, Adam (14)
Milz, Mathias (14)
Kiendler-Scharr, A. (14)
Stiller, G. P. (14)
Wiedensohler, A. (13)
Walker, K. A. (13)
Coe, H. (13)
Virtanen, Annele (13)
Blumenstock, T. (12)
Huang, Wei (12)
Höpfner, M. (12)
Gumbel, Jörg (11)
Laj, Paolo (11)
Baltensperger, U. (11)
Hase, F. (11)
Thomson, Erik S (11)
von Clarmann, T. (11)
Tillmann, R. (11)
Yttri, K. E. (10)
Sellegri, Karine (10)
Bianchi, Federico (10)
Kerminen, Veli-Matti (10)
Ehn, Mikael (10)
Wu, Cheng, 1985 (10)
Stohl, A. (10)
Fuchs, H. (10)
visa färre...
Lärosäte
Stockholms universitet (322)
Chalmers tekniska högskola (123)
Lunds universitet (91)
Göteborgs universitet (85)
Luleå tekniska universitet (33)
Uppsala universitet (23)
visa fler...
IVL Svenska Miljöinstitutet (17)
Umeå universitet (7)
Kungliga Tekniska Högskolan (7)
Örebro universitet (4)
Linköpings universitet (2)
RISE (2)
Sveriges Lantbruksuniversitet (2)
Malmö universitet (1)
Linnéuniversitetet (1)
Karolinska Institutet (1)
VTI - Statens väg- och transportforskningsinstitut (1)
visa färre...
Språk
Engelska (595)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (531)
Teknik (45)
Medicin och hälsovetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy