SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Borga Magnus) ;pers:(Läthén Gunnar)"

Sökning: WFRF:(Borga Magnus) > Läthén Gunnar

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Andersson, Thord, et al. (författare)
  • A Fast Optimization Method for Level Set Segmentation
  • 2009
  • Ingår i: Image Analysis. - Berlin, Heidelberg : Springer Berlin/Heidelberg. - 9783642022296 - 9783642022302 ; , s. 400-409
  • Konferensbidrag (refereegranskat)abstract
    • Level set methods are a popular way to solve the image segmentation problem in computer image analysis. A contour is implicitly represented by the zero level of a signed distance function, and evolved according to a motion equation in order to minimize a cost function. This function defines the objective of the segmentation problem and also includes regularization constraints. Gradient descent search is the de facto method used to solve this optimization problem. Basic gradient descent methods, however, are sensitive for local optima and often display slow convergence. Traditionally, the cost functions have been modified to avoid these problems. In this work, we instead propose using a modified gradient descent search based on resilient propagation (Rprop), a method commonly used in the machine learning community. Our results show faster convergence and less sensitivity to local optima, compared to traditional gradient descent.
  •  
2.
  • Andersson, Thord, et al. (författare)
  • Modified Gradient Search for Level Set Based Image Segmentation
  • 2013
  • Ingår i: IEEE Transactions on Image Processing. - : IEEE Signal Processing Society. - 1057-7149 .- 1941-0042. ; 22:2, s. 621-630
  • Tidskriftsartikel (refereegranskat)abstract
    • Level set methods are a popular way to solve the image segmentation problem. The solution contour is found by solving an optimization problem where a cost functional is minimized. Gradient descent methods are often used to solve this optimization problem since they are very easy to implement and applicable to general nonconvex functionals. They are, however, sensitive to local minima and often display slow convergence. Traditionally, cost functionals have been modified to avoid these problems. In this paper, we instead propose using two modified gradient descent methods, one using a momentum term and one based on resilient propagation. These methods are commonly used in the machine learning community. In a series of 2-D/3-D-experiments using real and synthetic data with ground truth, the modifications are shown to reduce the sensitivity for local optima and to increase the convergence rate. The parameter sensitivity is also investigated. The proposed methods are very simple modifications of the basic method, and are directly compatible with any type of level set implementation. Downloadable reference code with examples is available online.
  •  
3.
  • Läthén, Gunnar, et al. (författare)
  • Automatic Tuning of Spatially Varying Transfer Functions for Blood Vessel Visualization
  • 2012
  • Ingår i: IEEE Transactions on Visualization and Computer Graphics. - : IEEE. - 1077-2626 .- 1941-0506. ; 18:12, s. 2345-2354
  • Tidskriftsartikel (refereegranskat)abstract
    • Computed Tomography Angiography (CTA) is commonly used in clinical routine for diagnosing vascular diseases. The procedure involves the injection of a contrast agent into the blood stream to increase the contrast between the blood vessels and the surrounding tissue in the image data. CTA is often visualized with Direct Volume Rendering (DVR) where the enhanced image contrast is important for the construction of Transfer Functions (TFs). For increased efficiency, clinical routine heavily relies on preset TFs to simplify the creation of such visualizations for a physician. In practice, however, TF presets often do not yield optimal images due to variations in mixture concentration of contrast agent in the blood stream. In this paper we propose an automatic, optimization- based method that shifts TF presets to account for general deviations and local variations of the intensity of contrast enhanced blood vessels. Some of the advantages of this method are the following. It computationally automates large parts of a process that is currently performed manually. It performs the TF shift locally and can thus optimize larger portions of the image than is possible with manual interaction. The method is based on a well known vesselness descriptor in the definition of the optimization criterion. The performance of the method is illustrated by clinically relevant CT angiography datasets displaying both improved structural overviews of vessel trees and improved adaption to local variations of contrast concentration. 
  •  
4.
  • Läthén, Gunnar, et al. (författare)
  • Blood vessel segmentation using multi-scale quadrature filtering
  • 2010
  • Ingår i: Pattern Recognition Letters. - : Elsevier. - 0167-8655 .- 1872-7344. ; 31:8, s. 762-767
  • Tidskriftsartikel (refereegranskat)abstract
    • The segmentation of blood vessels is a common problem in medical imagingand various applications are found in diagnostics, surgical planning, trainingand more. Among many dierent techniques, the use of multiple scales andline detectors is a popular approach. However, the typical line lters usedare sensitive to intensity variations and do not target the detection of vesselwalls explicitly. In this article, we combine both line and edge detection usingquadrature lters across multiple scales. The lter result gives well denedvessels as linear structures, while distinct edges facilitate a robust segmentation.We apply the lter output to energy optimization techniques for segmentationand show promising results in 2D and 3D to illustrate the behavior of ourmethod. The conference version of this article received the best paper award inthe bioinformatics and biomedical applications track at ICPR 2008.
  •  
5.
  • Läthén, Gunnar, 1981-, et al. (författare)
  • Evaluation of transfer function methods in direct volume rendering of the blood vessel lumen
  • 2014
  • Ingår i: Proceedings from the EG VCBM 2014. Eurographics Workshop on Visual Computing for Biology and Medicine, Vienna, Austria, September 4–5, 2014. - : Eurographics - European Association for Computer Graphics. - 9783905674620 ; , s. 117-126
  • Konferensbidrag (refereegranskat)abstract
    • Visualization of contrast enhanced blood vessels in CT angiography data presents a challenge due to varying concentration of the contrast agent. The purpose of this work is to evaluate the correctness (effectiveness) in visualizing the vessel lumen using two different 3D visualization strategies, thereby assessing the feasibility of using such visualizations for diagnostic decisions. We compare a standard visualization approach with a recent method which locally adapts to the contrast agent concentration. Both methods are evaluated in a parallel setting where the participant is instructed to produce a complete visualization of the vessel lumen, including both large and small vessels, in cases of calcified vessels in the legs. The resulting visualizations are thereafter compared in a slice viewer to assess the correctness of the visualized lumen. The results indicate that the participants generally overestimated the size of the vessel lumen using the standard visualization, whereas the locally adaptive method better conveyed the true anatomy. The participants did find the interpretation of the locally adaptive method to be less intuitive, but also noted that this did not introduce any prohibitive complexity in the work flow. The observed trends indicate that the visualized lumen strongly depends on the width and placement of the applied transfer function and that this dependency is inherently local rather than global. We conclude that methods that permit local adjustments, such as the method investigated in this study, can be beneficial to certain types of visualizations of large vascular trees
  •  
6.
  •  
7.
  • Läthén, Gunnar, 1981- (författare)
  • Level Set Segmentation and Volume Visualization of Vascular Trees
  • 2013
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Medical imaging is an important part of the clinical workflow. With the increasing amount and complexity of image data comes the need for automatic (or semi-automatic) analysis methods which aid the physician in the exploration of the data. One specific imaging technique is angiography, in which the blood vessels are imaged using an injected contrast agent which increases the contrast between blood and surrounding tissue. In these images, the blood vessels can be viewed as tubular structures with varying diameters. Deviations from this structure are signs of disease, such as stenoses introducing reduced blood flow, or aneurysms with a risk of rupture. This thesis focuses on segmentation and visualization of blood vessels, consituting the vascular tree, in angiography images.Segmentation is the problem of partitioning an image into separate regions. There is no general segmentation method which achieves good results for all possible applications. Instead, algorithms use prior knowledge and data models adapted to the problem at hand for good performance. We study blood vessel segmentation based on a two-step approach. First, we model the vessels as a collection of linear structures which are detected using multi-scale filtering techniques. Second, we develop machine-learning based level set segmentation methods to separate the vessels from the background, based on the output of the filtering.In many applications the three-dimensional structure of the vascular tree has to be presented to a radiologist or a member of the medical staff. For this, a visualization technique such as direct volume rendering is often used. In the case of computed tomography angiography one has to take into account that the image depends on both the geometrical structure of the vascular tree and the varying concentration of the injected contrast agent. The visualization should have an easy to understand interpretation for the user, to make diagnostical interpretations reliable. The mapping from the image data to the visualization should therefore closely follow routines that are commonly used by the radiologist. We developed an automatic method which adapts the visualization locally to the contrast agent, revealing a larger portion of the vascular tree while minimizing the manual intervention required from the radiologist. The effectiveness of this method is evaluated in a user study involving radiologists as domain experts.
  •  
8.
  • Läthén, Gunnar, et al. (författare)
  • Momentum Based Optimization Methods for Level Set Segmentation
  • 2009
  • Ingår i: Momentum Based Optimization Methods for Level Set Segmentation. - Berlin : Springer Berlin/Heidelberg. - 3642022553 - 9783642022555 - 9783642022562 ; , s. 124-136
  • Konferensbidrag (refereegranskat)abstract
    • Segmentation of images is often posed as a variational problem. As such, it is solved by formulating an energy functional depending on a contour and other image derived terms. The solution of the segmentation problem is the contour which extremizes this functional. The standard way of solving this optimization problem is by gradient descent search in the solution space, which typically suffers from many unwanted local optima and poor convergence. Classically, these problems have been circumvented by modifying the energy functional. In contrast, the focus of this paper is on alternative methods for optimization. Inspired by ideas from the machine learning community, we propose segmentation based on gradient descent with momentum. Our results show that typical models hampered by local optima solutions can be further improved by this approach. We illustrate the performance improvements using the level set framework.
  •  
9.
  • Läthén, Gunnar, et al. (författare)
  • Non-ring Filters for Robust Detection of Linear Structures
  • 2010
  • Ingår i: Proceedings of the 20th International Conference on Pattern Recognition. - Los Alamitos, CA, USA : IEEE Computer Society. - 9781424475421 ; , s. 233-236
  • Konferensbidrag (refereegranskat)abstract
    • Many applications in image analysis include the problem of linear structure detection, e.g. segmentation of blood vessels in medical images, roads in satellite images, etc. A simple and efficient solution is to apply linear filters tuned to the structures of interest and extract line and edge positions from the filter output. However, if the filter is not carefully designed, artifacts such as ringing can distort the results and hinder a robust detection. In this paper, we study the ringing effects using a common Gabor filter for linear structure detection, and suggest a method for generating non-ring filters in 2D and 3D. The benefits of the non-ring design are motivated by results on both synthetic and natural images.
  •  
10.
  • Läthén, Gunnar, et al. (författare)
  • Phase Based Level Set Segmentation of Blood Vessels
  • 2008
  • Ingår i: Proceedings of 19th International Conference on Pattern Recognition. - : IEEE Computer Society. - 9781424421756 - 9781424421749 ; , s. 1-4
  • Konferensbidrag (refereegranskat)abstract
    • The segmentation and analysis of blood vessels hasreceived much attention in the research community. Theresults aid numerous applications for diagnosis andtreatment of vascular diseases. Here we use level setpropagation with local phase information to capture theboundaries of vessels. The basic notion is that localphase, extracted using quadrature filters, allows us todistinguish between lines and edges in an image. Notingthat vessels appear either as lines or edge pairs, weintegrate multiple scales and capture information aboutvessels of varying width. The outcome is a “global”phase which can be used to drive a contour robustly towardsthe vessel edges. We show promising results in2D and 3D. Comparison with a related method givessimilar or even better results and at a computationalcost several orders of magnitude less. Even with verysparse initializations, our method captures a large portionof the vessel tree.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy