SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "db:Swepub ;conttype:(scientificother);lar1:(uu);hsvcat:2"

Search: db:Swepub > Other academic/artistic > Uppsala University > Engineering and Technology

  • Result 1-10 of 1919
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Shahroozi, Zahra, 1992- (author)
  • Survivability control using data-driven approaches and reliability analysis for wave energy converters
  • 2024
  • Doctoral thesis (other academic/artistic)abstract
    • Wave energy, with five times the energy density of wind and ten times the power density of solar, offers a compelling carbon-free electricity solution. Despite its advantages, ongoing debates surround the reliability and economic feasibility of wave energy converters (WECs). To address these challenges, this doctoral thesis is divided into four integral parts, focusing on optimizing the prediction horizon for power maximization, analyzing extreme waves' impact on system dynamics, ensuring reliability, and enhancing survivability in WECs.Part I emphasizes the critical importance of the prediction horizon for maximal power absorption in wave energy conversion. Using generic body shapes and modes, it explores the effect of dissipative losses, noise, filtering, amplitude constraints, and real-world wave parameters on the prediction horizon. Findings suggest achieving optimal power output may be possible with a relatively short prediction horizon, challenging traditional assumptions.Part II shifts focus to WEC system dynamics, analyzing extreme load scenarios. Based on a 1:30 scaled wave tank experiment, it establishes a robust experimental foundation, extending into numerical assessment of the WEC. Results underscore the importance of damping to alleviate peak forces. Investigating various wave representations highlights conservative characteristics of irregular waves, crucial for WEC design in extreme sea conditions.Part III explores the computational intricacies of environmental design load cases and fatigue analyses for critical mechanical components of the WEC. The analysis is conducted for hourly sea state damage and equivalent two-million-cycle loads. Finally, a comparison of safety factors between the ultimate limit state and fatigue limit state unfolds, illustrating the predominant influence of the ultimate limit state on point-absorber WEC design.Part IV, centers on elevating survivability strategies for WECs in extreme wave conditions. Three distinct controller system approaches leverage neural networks to predict and minimize the line force. Distinct variations emerge in each approach, spanning from rapid detection of optimal damping to integrating advanced neural network architectures into the control system with feedback. The incorporation of a controller system, refined through experimental data, showcases decreases in the line force, providing a practical mechanism for real-time force alleviation.This thesis aims to contribute uniquely to the goal of advancing wave energy conversion technology through extensive exploration.
  •  
2.
  • Jeong, Seung Hee, 1978- (author)
  • Soft Intelligence : Liquids Matter in Compliant Microsystems
  • 2016
  • Doctoral thesis (other academic/artistic)abstract
    • Soft matter, here, liquids and polymers, have adaptability to a surrounding geometry. They intrinsically have advantageous characteristics from a mechanical perspective, such as flowing and wetting on surrounding surfaces, giving compliant, conformal and deformable behavior. From the behavior of soft matter for heterogeneous surfaces, compliant structures can be engineered as embedded liquid microstructures or patterned liquid microsystems for emerging compliant microsystems.Recently, skin electronics and soft robotics have been initiated as potential applications that can provide soft interfaces and interactions for a human-machine interface. To meet the design parameters, developing soft material engineering aimed at tuning material properties and smart processing techniques proper to them are to be highly encouraged. As promising candidates, Ga-based liquid alloys and silicone-based elastomers have been widely applied to proof-of-concept compliant structures.In this thesis, the liquid alloy was employed as a soft and stretchable electrical and thermal conductor (resistor), interconnect and filler in an elastomer structure. Printing-based liquid alloy patterning techniques have been developed with a batch-type, parallel processing scheme. As a simple solution, tape transfer masking was combined with a liquid alloy spraying technique, which provides robust processability. Silicone elastomers could be tunable for multi-functional building blocks by liquid or liquid-like soft solid inclusions. The liquid alloy and a polymer additive were introduced to the silicone elastomer by a simple mixing process. Heterogeneous material microstructures in elastomer networks successfully changed mechanical, thermal and surface properties.To realize a compliant microsystem, these ideas have in practice been useful in designing and fabricating soft and stretchable systems. Many different designs of the microsystems have been fabricated with the developed techniques and materials, and successfully evaluated under dynamic conditions. The compliant microsystems work as basic components to build up a whole system with soft materials and a processing technology for our emerging society.
  •  
3.
  • Wen, Rui-Tao (author)
  • Electrochromism in Metal Oxide Thin Films : Towards long-term durability and materials rejuvenation
  • 2015
  • Doctoral thesis (other academic/artistic)abstract
    • Electrochromic thin films can effectively regulate the visible and infrared light passing through a window, demonstrating great potential to save energy and offer a comfortable indoor environment in buildings. However, long-term durability is a big issue and the physics behind this is far from clear. This dissertation work concerns two important parts of an electrochromic window: the anodic and cathodic layers. In particular, work focusing on the anodic side develop a new Ni oxide based layers and uncover degradation dynamics in Ni oxide thin films; and work focusing on the cathodic side addresses materials rejuvenation with the aim to eliminate degradation.In the first part of this dissertation work, iridium oxide is found to be compatible with acids, bases and Li+-containing electrolytes, and an anodic layer with very superior long-term durability was developed by incorporating of small amount (7.6 at. %) of Ir into Ni oxide. This film demonstrated sustained cycle-dependent growth of charge density and electrochromic modulation even after 10,000 CV cycles. The (111) and (100) crystal facets in Ni oxide are found to possess different abilities to absorb cation and/or anion, which yields different degrees of coloration and this is very significant for the electrochromic properties. The degradation of charge capacity in Ni oxide has an inevitable rapid decay in the first hundreds of cycles, subsequently combined with a more gradual decay, which is independent of applied potential and film composition. The consistent phenomenon can be very well modeled by power-law or stretched exponential decay; however the two models are indistinguishable in the current stage. Interestingly, in both models, the power-law exponent is 0.2 ≤ p ≤ 0.8, with most of the values around 0.5, in line with normal or anomalous diffusion models.The second part of dissertation work deals with cathodic WO3 and TiO2. WO3 suffers from ion trapping induced degradation of charge capacity and optical modulation upon electrochemical cycling. This speculation is strongly supported by direct evidence from Time-of-Flight Elastic Recoil Detection Analysis (ToF-ERDA). Most importantly, this ion trapping induced degradation can be eliminated by a galvanostatic de-trapping process. Significant ion-trapping takes place when x exceeds ~0.65 in LixWO3. The trapped ions are stable in the host structure, meaning that the ions cannot de-trap without external stimuli. The similar work done on TiO2 significantly complements and extends the work on the recuperation of WO3; the difference is that the trapped ions in host TiO2 seem to be less stable compared with the trapped ions in WO3.    Overall, this dissertation presents a refined conceptual framework for developing superior electrochromic windows in energy efficient buildings.
  •  
4.
  • Chang, Ribooga (author)
  • Design and Optimization of CO2 sorbents for Point Source Emissions and Direct Air Capture
  • 2023
  • Doctoral thesis (other academic/artistic)abstract
    • This thesis presents a comprehensive study on the design and optimization of CO2 sorbents, targeting two distinct applications: CO2 capture from point source emissions and Direct Air Capture (DAC). The research first introduces Na2HfO3 as a potential CO2 sorbent for point source emissions, using the molten salt effects of Na2CO3 and the thermal stability of HfO2. This combination results in a CO2 sorbent with impressive thermal and cyclic stability, through various optimization steps to enhance CO2 capture performance and efficiency. The study then shows into the structural disorder in Na2ZrO3, a chemically similar CO2 sorbent. This investigation fills a knowledge gap, offering new insights into the sorbent's behavior in CO2 capture. For DAC applications, the thesis explores the design of inorganic anion pillared metal-organic frameworks, focusing on the adjustment of M5+−F− bond lengths in inorganic anion pillars within M5+OFFIVE-1-Ni samples. These structural modifications impact the CO2 capture properties, particularly in terms of capacity and kinetics, demonstrating the potential of structural tuning in enhancing sorbent effectiveness. The synthesized samples exhibit good cyclic and water stability, suggesting their potential for practical DAC applications.
  •  
5.
  • Cindemir, Umut, et al. (author)
  • Porous Nickel Oxide Sensor for Formaldehyde Detection
  • 2014
  • In: European Materials Society (E-MRS) Spring Meeting, Lille, France, May 26-30, 2014..
  • Conference paper (other academic/artistic)abstract
    • Formaldehyde is a volatile organic compound, which is a harmful indoor pollutant, causing sick building syndrome (SBS) and is released from household and building materials. Since higher concentrations of formaldehyde are considered to be carcinogenic, monitoring them indoors is of great importance. Advanced gas deposition has here been used to fabricate highly porous nickel oxide (NiO) thin films for formaldehyde sensing. The films were deposited on Al2O3 substrates with prefabricated comb-structured electrodes, and a resistive heater at the opposite face. The morphology of the films was investigated with scanning electron microscopy, and the porosity was determined by nitrogen adsorption isotherms with the Brunauer-Emmett-Teller method. The particle size was found to be less than 10 nm, as determined by x-ray diffraction. X-ray photoelectron spectroscopy of the NiO films was also done. Gas sensing measurements were done using a total gas flow rate of 200 ml/min. Resistivity values of sensors were recorded with formaldehyde diluted in synthetic air. Sensor resistances were recorded at 50 ppm, 25ppm, 10ppm and 5 ppm formaldehyde concentration. NiO films showed promising formaldehyde gas sensing properties implying lower levels of detection limit.
  •  
6.
  • Shahroozi, Zahra (author)
  • Prediction horizon requirement  in control and extreme load analyses for survivability : Advancements to improve the performance of wave energy technologies
  • 2021
  • Licentiate thesis (other academic/artistic)abstract
    • The main objective of wave energy converters (WECs) is to ensure reliable electricity production at a competitive cost. Two challenges to achieving this are ensuring an efficient energy conversion and offshore survivability.        This thesis work is structured in three different sections: Control and maximum power optimization, forces and dynamics analysis in extreme wave conditions, and statistical modeling of extreme loads in reliability analysis.       The need for prediction and future knowledge of waves and wave forces is essential due to the non-causality of the optimal velocity relation for wave energy converters. Using generic concepts and modes of motion, the sensitivity of the prediction horizon to various parameters encountered in a real system is elaborated. The results show that through a realistic assumption of the dissipative losses, only a few seconds to about half a wave cycle is sufficient to predict the required future knowledge for the aim of maximizing the power absorption.         The results of a 1:30 scaled wave tank experiment are used to assess the line force and dynamic behaviour of a WEC during extreme wave events. Within the comparison of different wave type representations, i.e. irregular, regular and focused waves, of the same sea state, the results show that not all the wave types deliver the same maximum line forces. As a strategy of mitigating the line forces during extreme wave events, changing the power take-off (PTO) damping may be employed. With consideration of the whole PTO range, the results indicate an optimum damping value for each sea state in which the smallest maximum line force is obtained. Although wave breaking slamming and end-stop spring compression lead to high peak line forces, it is possible that they level out due to the overtopping effect. Waves with a long wavelength result in large surge motion and consequently higher and more damaging forces.        On the investigation of reliability assessment of the wave energy converter systems, computing the return period of the extreme forces is crucial. Using force measurement force data gathered at the west coast of Sweden, the extreme forces are statistically modelled with the peak-over-threshold method. Then, the return level of the extreme forces over 20 years for the calm season of the year is computed.
  •  
7.
  • Stefanov, Bozhidar, 1988- (author)
  • Photocatalytic TiO2 thin films for air cleaning : Effect of facet orientation, chemical functionalization, and reaction conditions
  • 2015
  • Doctoral thesis (other academic/artistic)abstract
    • Poor indoor air quality is a source of adverse health effects. TiO2 coatings deposited on well-illuminated surfaces, such as window panes, can be used to fully mineralize indoor air pollutants by photocatalysis. In such applications it is important to ensure stable photocatalytic activity for a wide range of operating conditions, such as relative humidity and temperature, and to avoid deactivation of the catalyst.In this thesis photocatalytic removal of the indoor-pollutant acetaldehyde (CH3CHO) on nanostructured TiO2 films is investigated, and in particular it is proposed how such films can be modified and operated for maximum performance. Catalyst deactivation can be reduced by purposefully changing the surface acidity of TiO2 by covalently attaching SO4 to the surface. Moreover, the overall photocatalytic activity on anatase TiO2 films can be improved by increasing the fraction of exposed reactive {001} surfaces, which otherwise are dominated by {101} surfaces.In the first part of the thesis mode-resolved in-situ FTIR is used to elucidate the reaction kinetics of CH3CHO adsorption and photo-oxidation on the TiO2 and SO4 – modified TiO2 surfaces. Surface concentrations of main products and corresponding reaction rates were determined. Formate is the major reaction product, whose further oxidation limits the complete oxidation to gaseous species, and is responsible for photocatalyst deactivation by site inhibition. The oxidation reaction is characterized by two reaction pathways, which are associated with two types of surface reaction sites. On the sulfate modified TiO2 catalyst fewer intermediates are accumulated, and this catalyst resists deactivation much better than pure TiO2. A hitherto unknown intermediate – surface-bound acetaldehyde dimer with an adsorption band at 1643 cm−1 was discovered, using interplay between FTIR spectroscopy and DFT calculations.The second part of the thesis treats the effect of increasing the relative abundance of exposed {001} facets on the photocatalytic activity of anatase TiO2 films prepared by DC magnetron sputtering. A positive effect was observed both for liquid-phase photo-oxidation of methylene blue, and for gas-phase photocatalytic removal of CH3CHO. In both cases it was found that the exposed {001} surfaces were an order of magnitude more reactive, compared to the {101} ones. Furthermore, it was found that the reactive films were more resilient towards deactivation, and exhibited almost unchanged activity under varying reaction conditions. Finally, a synergetic effect of SO4 – modification and high fraction of exposed {001} surfaces was found, yielding photocatalysts with sustained high activity.The results presented here for facet controlled and chemically modified TiO2 films are of interest for applications in the built environment for indoor air purification and as self-cleaning surfaces.
  •  
8.
  • Svensson, Olle, 1967- (author)
  • Experimental results from the Lysekil Wave Power Research Site
  • 2012
  • Doctoral thesis (other academic/artistic)abstract
    • This thesis presents how experimental results, from wave power research performed offshore at the Lysekil research site, were obtained. The data were used to verify theoretical models as well as evaluate the feasibility of wave power as a future sustainable energy source.The first experiments carried out at the research site was the measurement of the force in a line where one end was connected to a buoy with a diameter of 3 m and the other end to a set of springs with limited stroke length. The system is exposed to high peak forces compared to average forces. The maximum measured force in the line, when the buoy motion is limited by a stiff stopper rope is ten times the average force in that particular sea state.The experiment performed on the first wave energy converter tested at the Lysekil Research Site is described. The infrastructure of the site is presented where the central connection point is the measuring station. The key finding is that it is possible to transform the motions of ocean waves into electrical energy and distribute it to land.Many wave energy converters must be interconnected if large amounts of energy are to be harvested from the waves. The first submerged substation intended for aggregation of energy from wave power converters is described, with focus on the measurement and control system placed inside the substation. During this experiment period the generators were equipped with many different sensors; these measurements are explained in the thesis.The system that aggregates power from the studied wave energy converter is regularly exposed to peak power of up to 20 times the maximum average output from the converter.Vertical and horizontal movement of the buoy has been measured in different ways. The result is that the vertical displacement of the buoy can be measured with a simple accelerometer circuit but it is much more complicated to measure the horizontal displacement. A special method for measuring the horizontal displacement has been implemented by measuring the strain in the enclosure and the force in the line.
  •  
9.
  • Cruz, Javier, 1990- (author)
  • Microfluidics for High-Pressure Inertial Focusing : Focusing, Separation and Concentration of Micro and Sub-micron Particles
  • 2020
  • Doctoral thesis (other academic/artistic)abstract
    • The birth of microsystems set the ground for technologies never imagined before, for it is not only the small size what characterizes the miniaturized systems, but unique phenomena arise in the micro scale. This thesis relates to one such unique phenomenon, inertial focusing, a phenomenon that occurs in microfluidic systems if very special conditions are met and that allows for fine manipulation of particles in fluid samples. This ability is key in a bigger picture: the analysis of complex fluids, where rare particles of interest may be present in very few numbers amongst a myriad of others, making the task difficult – if not impossible. A system exploiting inertial focusing allows, for instance, to focus, separate, isolate and concentrate such rare particles of interest, and even to transfer them to another fluid, thereby enabling/facilitating their detection and analysis. Examples of rare particles of interest in complex fluids are circulating tumor cells in blood, that give away the presence of cancer, extracellular vesicles also in blood, that contain biomarkers with physiological and pathological information about the patient, or bacteria in natural water, where the species present and their numbers are to be monitored for safety reasons and/or biological studies. This thesis covers the state of art physical principles behind the phenomenon and extends the understanding both in theory and applications. Specifically, the technology is extended to allow for manipulation of sub-micron particles, a range of interest as it comprises bacteria, viruses and organelles of eukaryotic cells. This was possible by an analysis of the balance of forces in play and by the integration of inertial focusing in high-pressure systems (up to 200 bar). In a second block, a very special line of inertial focusing is introduced and developed; inertial focusing in High Aspect Ratio Curved (HARC) microfluidics. These systems, engineered to rearrange the force field responsible for the particle manipulation, not only achieve excellent performances for focusing and concentration of particles, but also extreme resolution in their separation (mathematically unlimited; demonstrated experimentally for differences in size down to 80 nm). Perhaps more important than the performance, the systems are stable, intuitive and simpler to design, attributes that we hope will make the technology and its outstanding benefits more accessible to the community. With its remarkable performance, it would not come as a surprise if, in the near future, inertial focusing makes a strong impact on how analyses are performed nowadays and opens up for possibilities beyond the current state of the art.
  •  
10.
  • Nygren, Kristian (author)
  • Magnetron Sputtering of Nanocomposite Carbide Coatings for Electrical Contacts
  • 2016
  • Doctoral thesis (other academic/artistic)abstract
    • Today’s electronic society relies on the functionality of electrical contacts. To achieve good contact properties, surface coatings are normally applied. Such coatings should ideally fulfill a combination of different properties, like high electrical conductivity, high corrosion resistance, high wear resistance and low cost. A common coating strategy is to use noble metals since these do not form insulating surface oxides. However, such coatings are expensive, have poor wear resistance and they are often applied by electroplating, which poses environmental and human health hazards.In this thesis, nanocomposite carbide-based coatings were studied and the aim was to evaluate if they could exhibit properties that were suitable for electrical contacts. Coatings in the Cr-C, Cr-C-Ag and Nb-C systems were deposited by magnetron sputtering using research-based equipment as well as industrial-based equipment designed for high-volume production. To achieve the aim, the microstructure and composition of the coatings were characterized, whereas mechanical, tribological, electrical, electrochemical and optical properties were evaluated. A method to optically measure the amount of carbon was developed.In the Cr-C system, a variety of deposition conditions were explored and amorphous carbide/amorphous carbon (a-C) nanocomposite coatings could be obtained at substrate temperatures up to 500 °C. The amount of a-C was highly dependent on the total carbon content. By co-sputtering with Ag, coatings comprising an amorphous carbide/carbon matrix, with embedded Ag nanoclusters, were obtained. Large numbers of Ag nanoparticles were also found on the surfaces. In the Nb-C system, nanocrystalline carbide/a-C coatings could be deposited. It was found that the nanocomposite coatings formed very thin passive films, consisting of both oxide and a-C.The Cr-C coatings exhibited low hardness and low-friction properties. In electrochemical experiments, the Cr-C coatings exhibited high oxidation resistance. For the Cr-C-Ag coatings, the Ag nanoparticles oxidized at much lower potentials than bulk Ag. Overall, electrical contact resistances for optimized samples were close to noble metal references at low contact load. Thus, the studied coatings were found to have properties that make them suitable for electrical contact applications.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 1919
Type of publication
doctoral thesis (594)
conference paper (585)
other publication (244)
licentiate thesis (155)
journal article (142)
reports (116)
show more...
book chapter (56)
book (17)
artistic work (7)
editorial collection (5)
editorial proceedings (2)
review (2)
research review (1)
show less...
Type of content
Author/Editor
Strømme, Maria, 1970 ... (158)
Persson, Cecilia (43)
Wigren, Torbjörn (38)
Sladoje, Nataša (33)
Strömme, Maria (32)
Lindblad, Joakim (31)
show more...
Cheung, Ocean (29)
Wiklund, Urban (25)
Tenje, Maria (25)
Widén, Joakim, 1980- (24)
Jacobson, Staffan (22)
Leifer, Klaus (22)
Leijon, Mats (22)
Munkhammar, Joakim, ... (19)
Engqvist, Håkan (18)
Hayashi, Masaki, 195 ... (18)
Carlsson, Bengt, Pro ... (17)
Söderström, Torsten, ... (16)
Zhang, Shi-Li (16)
Kassman Rudolphi, Ås ... (16)
Åhlén, Michelle (15)
Wetzer, Elisabeth (15)
Stoica, Peter, Profe ... (14)
Nyholm, Leif (14)
Boström, Cecilia (14)
Carlsson, Bengt (14)
Dancila, Dragos (13)
Gamstedt, E. Kristof ... (13)
Thomas, Karin (13)
Bernhoff, Hans (12)
Svedlindh, Peter (12)
Wählby, Carolina (12)
Bengtsson, Ewert, Pr ... (12)
Schön, Thomas B., Pr ... (12)
Leijon, Mats, Profes ... (12)
Voigt, Thiemo (11)
Hjort, Klas (11)
Broström, Tor (11)
Wählby, Carolina, pr ... (11)
Gunningberg, Per, Pr ... (11)
Isaksson, Per (11)
Bernhoff, Hans, Prof ... (10)
Sintorn, Ida-Maria (10)
Rydberg, Anders (10)
Edvinsson, Tomas, Pr ... (10)
Ferraz, Natalia, 197 ... (10)
Hogmark, Sture (10)
Sjödin, Martin, 1974 ... (10)
Augustine, Robin, 19 ... (10)
Leijon, Mats, 1958 (10)
show less...
University
Royal Institute of Technology (29)
Luleå University of Technology (18)
Högskolan Dalarna (17)
Chalmers University of Technology (14)
Karlstad University (11)
show more...
Linköping University (8)
University of Gävle (7)
Swedish University of Agricultural Sciences (7)
University of Gothenburg (6)
Umeå University (5)
Stockholm University (5)
Mälardalen University (5)
Södertörn University (4)
RISE (4)
Halmstad University (3)
Örebro University (3)
Lund University (3)
University of Skövde (3)
Linnaeus University (3)
Karolinska Institutet (3)
Malmö University (2)
Mid Sweden University (2)
Jönköping University (1)
University of Borås (1)
Swedish National Defence College (1)
Blekinge Institute of Technology (1)
show less...
Language
English (1745)
Swedish (152)
Japanese (10)
Norwegian (6)
Arabic (2)
French (1)
show more...
Spanish (1)
Greek, Modern (1)
Serbian (1)
show less...
Research subject (UKÄ/SCB)
Natural sciences (223)
Medical and Health Sciences (46)
Social Sciences (45)
Humanities (31)
Agricultural Sciences (9)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view