SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "swepub srt2:(2000-2011);pers:(Groop Leif);spr:eng"

Sökning: swepub > (2000-2011) > Groop Leif > Engelska

  • Resultat 31-40 av 319
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
31.
  • Kotronen, A., et al. (författare)
  • A common variant in PNPLA3, which encodes adiponutrin, is associated with liver fat content in humans
  • 2009
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 1432-0428 .- 0012-186X. ; 52:6, s. 1056-1060
  • Tidskriftsartikel (refereegranskat)abstract
    • It has recently been suggested that the rs738409 G allele in PNPLA3, which encodes adiponutrin, is strongly associated with increased liver fat content in three different ethnic groups. The aims of the present study were as follows: (1) to try to replicate these findings in European individuals with quantitative measures of hepatic fat content; (2) to study whether the polymorphism influences hepatic and adipose tissue insulin sensitivity; and (3) to investigate whether PNPLA3 expression is altered in the human fatty liver. We genotyped 291 Finnish individuals in whom liver fat had been measured using proton magnetic resonance spectroscopy. Hepatic PNPLA3 expression was measured in 32 participants. Hepatic and adipose tissue insulin sensitivities were measured using a euglycaemic-hyperinsulinaemic (insulin infusion 0.3 mU kg(-1) min(-1)) clamp technique combined with infusion of [3-H-3]glucose in 109 participants. The rs738409 G allele in PNPLA3 was associated with increased quantitative measures of liver fat content (p = 0.011) and serum aspartate aminotransferase concentrations (p = 0.002) independently of age, sex and BMI. Fasting serum insulin and hepatic and adipose tissue insulin sensitivity were related to liver fat content independently of genotype status. PNPLA3 mRNA expression in the liver was positively related to obesity (r = 0.62, p < 0.0001) and to liver fat content (r = 0.58, p = 0.025) in participants who were not morbidly obese (BMI < 40 kg/m(2)). A common variant in PNPLA3 increases the risk of hepatic steatosis in humans.
  •  
32.
  • Kotronen, Anna, et al. (författare)
  • Genetic variation in the ADIPOR2 gene is associated with liver fat content and its surrogate markers in three independent cohorts
  • 2009
  • Ingår i: European Journal of Endocrinology. - 1479-683X. ; 160:4, s. 593-602
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims: We investigated whether polymorph isms in candidate genes involved in lipid metabolism and type 2 diabetes are related to liver I, at content. Methods: Liver fat content was measured using proton magnetic resonance spectroscopy (H-1-MRS) in 302 Finns, in whom single nucleotide polymorphisms (SNPs) in acyl-CoA synthetase long-chain family member 4 (ACSL4). acliponectin receptors 1 and 2 (ADIPOR1 and ADIPOR2), and the three peroxisome proliferator-activated receptors (PPARA, PPARD, and PPARG) were analyzed. To validate our findings, SNPs significantly associated with liver fat content were Studied in two independent cohorts and related to surrogate markers of liver fat content. Results: In the Finnish subjects, polymorphisms in ACSL4 (rs7887981), ADIPOR2 (rs767870), and PPARG (rs3856806) were significantly associated with liver fat content measured with H-1-MRS after adjusting for age, gender, and BMI, Anthropometric and circulating parameters were comparable between genotypes. In the first validation cohort of similar to 600 Swedish men, ACSL4 rs7887981 was related to fasting insulin and triglyceride concentrations, and ADIPOR2 rs767870 to serum gamma glutamyltransfer concentrations after adjusting for BMI. The SNP in PPARG (rs3856806) was not significantly associated with any relevant metabolic parameter in this cohort. In the second validation cohort of similar to 3000 subjects from Western Finland, ADIPOR2 rs767870, but not ACSL4 rs7887981 was related to fasting triglyceride concentrations. Conclusions: Genetic variation, particularly in the ADIPOR2 gene, contributes to variation in hepatic fat accumulation in humans.
  •  
33.
  • Lyon, Helen N., et al. (författare)
  • The association of a SNP upstream of INSIG2 with body mass index is reproduced in several but not all cohorts
  • 2007
  • Ingår i: PLoS Genetics. - : Public Library of Science (PLoS). - 1553-7404. ; 3:4
  • Tidskriftsartikel (refereegranskat)abstract
    • A SNP upstream of the INSIG2 gene, rs7566605, was recently found to be associated with obesity as measured by body mass index (BMI) by Herbert and colleagues. The association between increased BMI and homozygosity for the minor allele was first observed in data from a genome-wide association scan of 86,604 SNPs in 923 related individuals from the Framingham Heart Study offspring cohort. The association was reproduced in four additional cohorts, but was not seen in a fifth cohort. To further assess the general reproducibility of this association, we genotyped rs7566605 in nine large cohorts from eight populations across multiple ethnicities (total n = 16,969). We tested this variant for association with BMI in each sample under a recessive model using family-based, population-based, and case-control designs. We observed a significant (p < 0.05) association in five cohorts but saw no association in three other cohorts. There was variability in the strength of association evidence across examination cycles in longitudinal data from unrelated individuals in the Framingham Heart Study Offspring cohort. A combined analysis revealed significant independent validation of this association in both unrelated (p = 0.046) and family-based (p = 0.004) samples. The estimated risk conferred by this allele is small, and could easily be masked by small sample size, population stratification, or other confounders. These validation studies suggest that the original association is less likely to be spurious, but the failure to observe an association in every data set suggests that the effect of SNP rs7566605 on BMI may be heterogeneous across population samples.
  •  
34.
  • Malmgren, Siri, et al. (författare)
  • Tight coupling between glucose and mitochondrial metabolism in clonal beta-cells is required for robust insulin secretion.
  • 2009
  • Ingår i: Journal of Biological Chemistry. - 1083-351X. ; 284, s. 32395-32404
  • Tidskriftsartikel (refereegranskat)abstract
    • The biochemical mechanisms underlying glucose-stimulated insulin secretion from pancreatic beta-cells are not completely understood. To identify metabolic disturbances in beta-cells that impair glucose-stimulated insulin secretion, we compared two INS-1-derived clonal beta-cell lines, which are glucose-responsive (832/13) or glucose-unresponsive (832/2). We found that despite a marked impairment of glucose-stimulated insulin secretion, 832/2 cells exhibited a higher rate of glycolysis. Still, no glucose-induced increases in respiratory rate, ATP production or respiratory chain complex I, III and IV activities were seen in the 832/2 cells. Instead, 832/2 cells, which expressed lactate dehydrogenase, released lactate regardless of ambient glucose concentrations. In contrast, the glucose-responsive 832/13 line lacked lactate dehydrogenase and did not produce lactate. Accordingly, in 832/2 cells mRNA expression of genes for glycolytic enzymes were up-regulated, whereas mitochondria-related genes were down-regulated. In human islets, mRNA expression of genes such as lactate dehydrogenase A and hexokinase I correlated positively with long-term glucose homeostasis reflected by HbA1c levels, while that of Slc2a2 (GLUT2) correlated negatively with Hb1Ac. We conclude that tight metabolic regulation enhancing mitochondrial metabolism and restricting glycolysis in 832/13 cells is required for clonal beta-cells to secrete insulin robustly in response to glucose. Moreover, a similar expression pattern of genes controlling glycolytic and mitochondrial metabolism in clonal beta-cells and human islets was observed, suggesting that a similar prioritization of mitochondrial metabolism is required in healthy human beta-cells. The 832 beta-cell lines may be helpful tools to resolve metabolic perturbations occurring in Type 2 Diabetes.
  •  
35.
  •  
36.
  • Nilsson, Emma A, et al. (författare)
  • The hormone-sensitive lipase C-60G promoter polymorphism is associated with increased waist circumference in normal-weight subjects.
  • 2006
  • Ingår i: International Journal of Obesity. - : Springer Science and Business Media LLC. - 1476-5497 .- 0307-0565. ; 30:9, s. 1442-1448
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: Hormone-sensitive lipase (HSL) is a key enzyme in the mobilization of fatty acids from triglyceride stores in adipocytes. The aim of the present study was to investigate the role of the HSL gene promoter variant C-60G, a polymorphism which previously has been associated with reduced promoter activity in vitro, in obesity and type 2 diabetes. DESIGN: We genotyped two materials consisting of obese subjects and non-obese controls, one material with offspring-parents trios, where the offspring was abdominally obese and one material with trios, where the offspring had type 2 diabetes or impaired glucose homeostasis. HSL promoter containing the HSL C-60G G-allele was generated and tested against a construct with the C-allele in HeLa cells and primary rat adipocytes. HSL mRNA levels were quantified in subcutaneous and visceral fat from 33 obese subjects. RESULTS: We found that the common C-allele was associated with increased waist circumference and WHR in lean controls, but there was no difference in genotype frequency between obese and non-obese subjects. There was a significant increased transmission of C-alleles to the abdominally obese offspring but no increased transmission of C-alleles was observed to offspring with impaired glucose homeostasis. The G-allele showed reduced transcription in HeLa cells and primary rat adipocytes. HSL mRNA levels were significantly higher in subcutaneous compared to visceral fat from obese subjects. CONCLUSION: The HSL C-60G polymorphism is associated with increased waist circumference in non-obese subjects.
  •  
37.
  • Parikh, Hemang, et al. (författare)
  • TXNIP regulates peripheral glucose metabolism in humans
  • 2007
  • Ingår i: PLoS Medicine. - : Public Library of Science (PLoS). - 1549-1676. ; 4:5, s. 868-879
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Type 2 diabetes mellitus ( T2DM) is characterized by defects in insulin secretion and action. Impaired glucose uptake in skeletal muscle is believed to be one of the earliest features in the natural history of T2DM, although underlying mechanisms remain obscure. Methods and Findings We combined human insulin/glucose clamp physiological studies with genome-wide expression profiling to identify thioredoxin interacting protein ( TXNIP) as a gene whose expression is powerfully suppressed by insulin yet stimulated by glucose. In healthy individuals, its expression was inversely correlated to total body measures of glucose uptake. Forced expression of TXNIP in cultured adipocytes significantly reduced glucose uptake, while silencing with RNA interference in adipocytes and in skeletal muscle enhanced glucose uptake, confirming that the gene product is also a regulator of glucose uptake. TXNIP expression is consistently elevated in the muscle of prediabetics and diabetics, although in a panel of 4,450 Scandinavian individuals, we found no evidence for association between common genetic variation in the TXNIP gene and T2DM. Conclusions TXNIP regulates both insulin-dependent and insulin- independent pathways of glucose uptake in human skeletal muscle. Combined with recent studies that have implicated TXNIP in pancreatic beta-cell glucose toxicity, our data suggest that TXNIP might play a key role in defective glucose homeostasis preceding overt T2DM.
  •  
38.
  • Pramfalk, C, et al. (författare)
  • Control of ACAT2 Liver Expression by HNF4{alpha}. Lesson From MODY1 Patients.
  • 2009
  • Ingår i: Arteriosclerosis, Thrombosis and Vascular Biology. - 1524-4636. ; 29:8, s. 1235-1241
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: ACAT2 is thought to be responsible for cholesteryl ester production in chylomicron and VLDL assembly. Recently, we identified HNF1alpha as an important regulator of the human ACAT2 promoter. Thus, we hypothesized that MODY3 (HNF1alpha gene mutations) and possibly MODY1 (HNF4alpha, upstream regulator of HNF1alpha, gene mutations) subjects may have lower VLDL esterified cholesterol. METHODS AND RESULTS: Serum analysis and lipoprotein separation using size-exclusion chromatography were performed in controls and MODY1 and MODY3 subjects. In vitro analyses included mutagenesis and cotransfections in HuH7 cells. Finally, the relevance in vivo of these findings was tested by ChIP assays in human liver. Whereas patients with MODY3 had normal lipoprotein composition, those with MODY1 had lower levels of VLDL and LDL esterified cholesterol, as well as of VLDL triglyceride. Mutagenesis revealed one important HNF4 binding site in the human ACAT2 promoter. ChIP assays and protein-to-protein interaction studies showed that HNF4alpha, directly or indirectly (via HNF1alpha), can bind to the ACAT2 promoter. CONCLUSIONS: We identified HNF4alpha as an important regulator of the hepatocyte-specific expression of the human ACAT2 promoter. Our results suggest that the lower levels of esterified cholesterol in VLDL- and LDL-particles in patients with MODY1 may-at least in part-be attributable to lower ACAT2 activity in these patients.
  •  
39.
  •  
40.
  • Jin, Zhe, et al. (författare)
  • Insulin reduces neuronal excitability by turning on GABA(A) channels that generate tonic current
  • 2011
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 6:1, s. e16188-
  • Tidskriftsartikel (refereegranskat)abstract
    • Insulin signaling to the brain is important not only for metabolic homeostasis but also for higher brain functions such as cognition. GABA (γ-aminobutyric acid) decreases neuronal excitability by activating GABA(A) channels that generate phasic and tonic currents. The level of tonic inhibition in neurons varies. In the hippocampus, interneurons and dentate gyrus granule cells normally have significant tonic currents under basal conditions in contrast to the CA1 pyramidal neurons where it is minimal. Here we show in acute rat hippocampal slices that insulin (1 nM) "turns on" new extrasynaptic GABA(A) channels in CA1 pyramidal neurons resulting in decreased frequency of action potential firing. The channels are activated by more than million times lower GABA concentrations than synaptic channels, generate tonic currents and show outward rectification. The single-channel current amplitude is related to the GABA concentration resulting in a single-channel GABA affinity (EC(50)) in intact CA1 neurons of 17 pM with the maximal current amplitude reached with 1 nM GABA. They are inhibited by GABA(A) antagonists but have novel pharmacology as the benzodiazepine flumazenil and zolpidem are inverse agonists. The results show that tonic rather than synaptic conductances regulate basal neuronal excitability when significant tonic conductance is expressed and demonstrate an unexpected hormonal control of the inhibitory channel subtypes and excitability of hippocampal neurons. The insulin-induced new channels provide a specific target for rescuing cognition in health and disease.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 31-40 av 319
Typ av publikation
tidskriftsartikel (283)
konferensbidrag (31)
forskningsöversikt (5)
Typ av innehåll
refereegranskat (313)
övrigt vetenskapligt/konstnärligt (6)
Författare/redaktör
Lyssenko, Valeriya (69)
Almgren, Peter (64)
Tuomi, Tiinamaija (55)
Orho-Melander, Marju (51)
Melander, Olle (38)
visa fler...
Isomaa, Bo (35)
Ling, Charlotte (32)
Ridderstråle, Martin (29)
Altshuler, David (28)
Tuomi, T. (26)
Boehnke, Michael (26)
Nilsson, Peter (23)
Isomaa, B. (20)
Kuusisto, Johanna (20)
Laakso, Markku (20)
Tuomilehto, Jaakko (20)
Jackson, Anne U. (20)
Stringham, Heather M (20)
McCarthy, Mark I (19)
Hirschhorn, Joel N. (19)
Voight, Benjamin F. (19)
Mohlke, Karen L (18)
Peltonen, Leena (18)
Wareham, Nicholas J. (17)
Eriksson, Karl-Fredr ... (17)
Barroso, Ines (17)
Saxena, Richa (17)
Lindholm, Eero (16)
Jonsson, Anna (16)
Vaag, Allan (16)
Guiducci, Candace (16)
Parikh, Hemang (16)
Bonnycastle, Lori L. (16)
Collins, Francis S. (16)
Scott, Laura J (16)
Wichmann, H. Erich (15)
Altshuler, D. (15)
Hattersley, Andrew T (15)
Illig, Thomas (15)
Frayling, Timothy M (15)
Salomaa, Veikko (14)
Sjögren, Marketa (14)
Rönn, Tina (14)
Berglund, Göran (14)
Poulsen, Pernille (14)
Hansen, Torben (14)
Råstam, Lennart (14)
Lindblad, Ulf (14)
Lindgren, Cecilia M. (14)
visa färre...
Lärosäte
Lunds universitet (315)
Karolinska Institutet (35)
Göteborgs universitet (24)
Uppsala universitet (17)
Umeå universitet (8)
Stockholms universitet (4)
visa fler...
Linköpings universitet (4)
Chalmers tekniska högskola (4)
Malmö universitet (2)
visa färre...
Språk
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (315)
Naturvetenskap (5)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy