SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "LAR1:gu ;pers:(Chen Deliang 1961)"

Sökning: LAR1:gu > Chen Deliang 1961

  • Resultat 171-180 av 640
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
171.
  • Gao, Yang, et al. (författare)
  • The Influence of Increased CO2 Concentrations on AMOC Interdecadal Variability Under the LGM Background
  • 2024
  • Ingår i: JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES. - 2169-897X .- 2169-8996. ; 129:3
  • Tidskriftsartikel (refereegranskat)abstract
    • This study explores the impact of rising CO2 levels on the Atlantic meridional overturning circulation's (AMOC) interdecadal variability within the context of the Last Glacial Maximum (LGM) background climate. Under heightened CO2 concentrations, the AMOC interdecadal variability intensifies dramatically, which is very different from the future warming case that shows a weakening of AMOC interdecadal variability in response to increased CO2 concentration. This unexpected phenomenon primarily results from the extensive retreat of sea ice, which exposes a larger portion of the ocean surface to efficiently feel the heat flux fluctuations from atmospheric processes. These findings underscore the significance of background climate conditions in shaping AMOC responses to increased CO2 and emphasize the necessity of considering these nuances to develop a more accurate understanding of AMOC dynamics in an evolving climate. Plain Language Summary The Atlantic meridional overturning circulation (AMOC) is an important component of the Earth system, and its interdecadal variability is predicted to be significantly weakened under future warming scenarios. In this paper, we analyze the response of AMOC interdecadal variability to rising CO2 levels under the background of the Last Glacial Maximum (LGM) and find that the AMOC interdecadal variability is intensified under increased CO2 , which is totally different from its response at the background of modern climate. Analyses suggest that this unexpected result is mainly caused by dramatic sea ice retreat, which exposes much seawater to efficiently receive large fluctuations of heat flux from atmospheric forcing. The findings reveal that the response of AMOC to increased CO2 and relevant dominant mechanism differs significantly under different climate conditions.
  •  
172.
  •  
173.
  • Gong, D.-Y., et al. (författare)
  • Weekly cycle of aerosol-meteorology interaction over China
  • 2007
  • Ingår i: Journal of Geophysical Research - Atmospheres. - 0148-0227 .- 2156-2202. ; :D22202
  • Tidskriftsartikel (refereegranskat)abstract
    • Weekly cycles of the concentration of anthropogenic aerosols have been observed in many regions around the world. The phase and the magnitude of these cycles, however, vary greatly depending on region and season. In the present study the authors investigated important features of the weekly cycles of aerosol concentration and the covariations in meteorological conditions in major urban regions over east China, one of the most polluted areas in the world, in summertime during the period 2001–2005/2006. The PM10 (aerosol particulate matters of diameter < 10 μm) concentrations at 29 monitoring stations show significant weekly cycles with the largest values around midweek and smallest values in weekend. Accompanying the PM10 cycle, the meteorological variables also show notable and consistent weekly cycles. The wind speed in the lower troposphere is relatively small in the early part of the week and increases after about Wednesday. At the same time, the air temperature anomalies in low levels are positive and then become negative in the later part of the week. The authors hypothesize that the changes in the atmospheric circulation may be triggered by the accumulation of PM10 through diabatic heating of lower troposphere. During the early part of a week the anthropogenic aerosols are gradually accumulated in the lower troposphere. Around midweek, the accumulated aerosols could induce radiative heating, likely destabilizing the middle to lower troposphere and generating anomalously vertical air motion and thus resulting in stronger winds. The resulting circulation could promote ventilation to reduce aerosol concentrations in the boundary layer during the later part of the week. Corresponding to this cycle in anthropogenic aerosols the frequency of precipitation, particularly the light rain events, tends to be suppressed around midweek days through indirect aerosol effects. This is consistent with the observed anthropogenic weather cycles, i.e., more (less) solar radiation near surface, higher (lower) maximum temperature, larger (smaller) diurnal temperature range, and fewer (more) precipitation events in midweek days (weekend).
  •  
174.
  • Gong, Guoqing, et al. (författare)
  • Anomalous Water Vapor Circulation in an Extreme Drought Event of the Mid-Reaches of the Lancang-Mekong River Basin
  • 2024
  • Ingår i: EARTHS FUTURE. - 2328-4277. ; 12:8
  • Tidskriftsartikel (refereegranskat)abstract
    • The middle reaches of the Lancang-Mekong River Basin (M-LMRB) experienced a record-breaking drought event in 2019, resulting in significant economic losses of approximately 650 million dollars and affecting a population of 17 million. However, the anomalous circulation and transportation processes of water vapor, which may have played a crucial role in inducing the extreme drought, have not been fully studied. In this study, we analyze the water vapor circulation during the 2019 drought event using the land-atmosphere water balance and a backward trajectory model for moisture tracking. Our results indicate that the precipitation in the M-LMRB from May to October 2019 was only 71.9% of the long-term climatological mean (1959-2021). The low precipitation during this drought event can be attributed to less-than-normal external water vapor supply. Specifically, the backward trajectory model reveals a decrease in the amount of water vapor transported from the Indian Ocean, the Bay of Bengal, and the Pacific Ocean, which are the main moisture sources for precipitation in the region. Comparing the atmospheric circulation patterns in 2019 with the climatology, we identify anomalous anticyclone conditions in the Bay of Bengal, anomalous westerlies in the Northeast Indian Ocean, and an anomalous cyclone in the Western Pacific Ocean, collectively facilitating a stronger export of water vapor from the region. Therefore, the dynamic processes played a more significant role than thermodynamic processes in contributing to the 2019 extreme drought event. In 2019, a record-breaking drought hit the M-LMRB, leading to significant economic losses and affecting a large population. This study explores the water vapor circulation during this drought using land-atmosphere water balance and a backward trajectory model. Findings show that precipitation from May to October 2019 was only seventy percent of the average from 1959 to 2021. The drought's severity was mainly due to a lack of water vapor from key sources: the Indian Ocean, the Bay of Bengal, and the Pacific Ocean. Anomalous weather patterns-an anticyclone in the Bay of Bengal, unusual westerlies in the Northeast Indian Ocean, and a cyclone in the Western Pacific-led to a significant reduction in water vapor reaching the region. This indicates that dynamic atmospheric processes played a larger role in causing the extreme drought than thermodynamic ones. These insights help improve understanding and prediction of droughts in Southeast Asia, particularly under changing climate conditions. Reduced external water vapor transport primarily leads to negative precipitation anomalies There has been a reduction in water vapor originating from the Indian Ocean, Bay of Bengal, and Pacific Ocean The reduction in water vapor transport is primarily influenced by dynamic factors rather than thermodynamic ones
  •  
175.
  • Gong, Lebing, et al. (författare)
  • Sensitivity of the Penman–Monteith reference evapotranspiration to key climatic variables in the Changjiang (Yangtze River) basin
  • 2006
  • Ingår i: Journal of Hydrology. - : Elsevier BV. - 0022-1694 .- 1879-2707. ; 329:3-4, s. 620-629
  • Tidskriftsartikel (refereegranskat)abstract
    • Sensitivity analysis is important in understanding the relative importance of climatic variables to the variation of reference evapotranspiration (ETref). In this study, a non-dimensional relative sensitivity coefficient was employed to predict responses of ETref to perturbations of four climatic variables in the Changjiang (Yangtze River) basin. ETref was estimated with the FAO-56 Penman–Monteith equation. A 41-year historical dataset of daily air temperature, wind speed, relative humidity and daily sunshine duration at 150 national meteorological observatory stations was used in the analysis. Results show that the response of ETref can be precisely predicted under perturbation of relative humidity or shortwave radiation by their sensitivity coefficients; the predictive power under perturbations of air temperature and wind speed depended on the magnitude of the perturbation, season and region. The prediction errors were much smaller than the seasonal and regional variation of their sensitivity coefficients. The sensitivity coefficient could also be used to predict the response of ETref to co-perturbation of several variables. The accuracy of the prediction increases from the lower to the upper region. Spatial variations of long-term average monthly and yearly sensitivity coefficients were obtained by interpolation of station estimates. In general, relative humidity was the most sensitive variable, followed by shortwave radiation, air temperature and wind speed. The actual rank of the four climatic variables in terms of their sensitivity varied with season and region. The large spatial variability of the sensitivity coefficients of all the climatic variables in the middle and lower regions of the basin was to a large extent determined by the distinct wind-speed patterns in those two regions.
  •  
176.
  • Gou, J. J., et al. (författare)
  • More realistic land-use and vegetation parameters in a regional climate model reduce model biases over China
  • 2019
  • Ingår i: International Journal of Climatology. - : Wiley. - 0899-8418 .- 1097-0088. ; 39:12, s. 4825-4837
  • Tidskriftsartikel (refereegranskat)abstract
    • Accurate vegetation cover data are important for realistic simulation of regional climate. The default vegetation parameters from Global Land Cover 2000, currently incorporated into global climate models and used in regional climate model RegCM, are not realistic for China, which may have contributed to serious bias in surface climate simulation. In this study, a new set of vegetation parameters considering the Plant Functional Type (PFT) fractions and the corresponding monthly leaf area index (PFT_LAI), were developed based on the land cover and MODIS LAI data sets. The regional climate model RegCM4.5 coupled with the land surface model CLM4.5 were utilized to test the performance of the new vegetation parameters by comparing simulations with observations using different surface parameters. The surface energy balance was analysed to examine the effects of changed vegetation parameters on regional climate. The results showed that the new parameters were more accurate than the GLC2000 parameters when describing the distribution of crops, grassland, and forests over China. The improved vegetation parameters reduced model biases for winter air temperature and precipitation over southern China by 0.9 degrees C and 8%, respectively, and reduced the winter temperature and summer precipitation biases over northeastern China by approximately 0.7 degrees C and 8%, respectively. More accurate surface albedo are the main reasons for reductions in model bias. However, certain biases, such as the cold and dry bias over the Tibetan Plateau, still remained in the simulation results using our new vegetation data.
  •  
177.
  • Graham, Ph., et al. (författare)
  • Chapter 3: Projections of future climate change
  • 2008
  • Ingår i: The BALTEX Assessment of Climate Change for the Baltic Sea basin. - Berlin, Germany : Springer. ; , s. 133-220
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)
  •  
178.
  • Grundström, Maria, 1979, et al. (författare)
  • Influence of atmospheric circulation patterns on urban air quality during the winter
  • 2015
  • Ingår i: Atmospheric Pollution Research. - 1309-1042. ; 6:2, s. 278-285
  • Tidskriftsartikel (refereegranskat)abstract
    • Relationships between urban nitrogen dioxide (NO2) and atmospheric circulation at two spatial scales were studied for Southern Sweden. Lamb Weather Types (LWT) describe the circulation (scale: thousands of kilometers) including non–directional (cyclonic and anticyclonic) and directional types depending on the wind direction. LWTs with low wind speeds (anticyclonic, NW and N) were associated with strongly elevated [NO2], between 46–52% of the daily averages of NO2 exceeded the 60 μg m–3 air quality standard (AQS) when occurring during these LWTs. The lowest fractions of exceedances of NO2 AQS were generally observed for LWTs E, S, SW and W. A larger scale circulation (several thousands of kilometers) was represented by the North Atlantic Oscillation (NAO) affecting meteorology over middle and high latitudes in the Northern Hemisphere. While a negative NAO index (NAOI) favors stagnant high pressure weather over Northern Europe, a positive NAOI is often associated with windy conditions. High [NO2] was found to be frequent under negative NAOI. Additionally, larger fractions of exceedances of NO2 AQS were observed for the majority of LWTs occurring at negative NAOI. It’s concluded that both LWTs and NAOI had partly independent effects on the urban air quality in a North European city. These circulation indices can be useful tools for air pollution risk assessment and forecasting.
  •  
179.
  • Grundström, Maria, 1979, et al. (författare)
  • The relationship between birch pollen, air pollution and weather types and their effect on antihistamine purchase in two Swedish cities
  • 2017
  • Ingår i: Aerobiologia. - : Springer Science and Business Media LLC. - 0393-5965 .- 1573-3025. ; 33:4, s. 457-471
  • Tidskriftsartikel (refereegranskat)abstract
    • © 2017 The Author(s)Exposure to elevated air pollution levels can aggravate pollen allergy symptoms. The aim of this study was to investigate the relationships between airborne birch (Betula) pollen, urban air pollutants NO2, O3 and PM10 and their effects on antihistamine demand in Gothenburg and Malmö, Sweden, 2006–2012. Further, the influence of large-scale weather pattern on pollen-/pollution-related risk, using Lamb weather types (LWTs), was analysed. Daily LWTs were obtained by comparing the atmospheric pressure over a 16-point grid system over southern Sweden (scale ~3000 km). They include two non-directional types, cyclonic (C) and anticyclonic (A) and eight directional types depending on the wind direction (N, NE, E…). Birch pollen levels were exceptionally high under LWTs E and SE in both cities. Furthermore, LWTs with dry and moderately calm meteorological character (A, NE, E, SE) were associated with strongly elevated air pollution (NO2 and PM10) in Gothenburg. For most weather situations in both cities, simultaneously high birch pollen together with high air pollution had larger over-the-counter (OTC) sales of antihistamines than situations with high birch pollen alone. LWTs NE, E, SE and S had the highest OTC sales in both cities. In Gothenburg, the city with a higher load of both birch pollen and air pollution, the higher OTC sales were especially obvious and indicate an increased effect on allergic symptoms from air pollution. Furthermore, Gothenburg LWTs A, NE, E and SE were associated with high pollen and air pollution levels and thus classified as high-risk weather types. In Malmö, corresponding high-risk LWTs were NE, E, SE and S. Furthermore, occurrence of high pollen and air pollutants as well as OTC sales correlated strongly with vapour pressure deficit and temperature in Gothenburg (much less so in Malmö). This provides evidence that the combination of meteorological properties associated with LWTs can explain high levels of birch pollen and air pollution. Our study shows that LWTs represent a useful tool for integrated daily air quality forecasting/warning.
  •  
180.
  • Grundström, Maria, 1979, et al. (författare)
  • Variation and co-variation of PM10, particle number concentration, NOx and NO2 in the urban air - Relationships with wind speed, vertical temperature gradient and weather type
  • 2015
  • Ingår i: Atmospheric Environment. - : Elsevier Ltd. - 1352-2310. ; 120, s. 317-327
  • Tidskriftsartikel (refereegranskat)abstract
    • Atmospheric ultrafine particles (UFP; diameter < 0.1 μm) represent a growing global health concern in urban environments and has a strong link to traffic related emissions. UFP is usually the dominating fraction of atmospheric particle number concentrations (PNC) despite being a minor part of total particle mass. The aim of this study was to empirically investigate the relationship between PNC and other air pollutants (NOX, NO2 and PM10) in the urban environment and their dependence on meteorology and weather type, using the Lamb Weather Type (LWT) classification scheme. The study was carried out in Gothenburg, Sweden, at an urban background site during April 2007-May 2008. It was found that daily average [PNC] correlated very well with [NOx] (R2 = 0.73) during inversion days, to a lesser extent with [NO2] (R2 = 0.58) and poorly with [PM10] (R2 = 0.07). Both PNC and NOx had similar response patterns to wind speed and to the strength of temperature inversions. PNC displayed two regimes, one strongly correlated to NOx and a second poorly correlated to NOx which was characterised by high wind speed. For concentration averages based on LWTs, the PNC-[NOx] relationship remained strong (R2 = 0.70) where the windy LWT W deviated noticeably. Exclusion of observations with wind speed >5 ms-1 or ΔT < 0 °C from LWTs produced more uniform and stronger relationships (R2 = 0.90; R2 = 0.93). Low wind speeds and positive vertical temperature gradients were most common during LWTs A, NW, N and NE. These weather types were also associated with the highest daily means of NOx (~30 ppb) and PNC (~10 000 # cm-3). A conclusion from this study is that NOx (but not PM10) is a good proxy for PNC especially during calm and stable conditions and that LWTs A, NW, N and NE are high risk weather types for elevated NOx and PNC. © 2015.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 171-180 av 640
Typ av publikation
tidskriftsartikel (583)
rapport (22)
forskningsöversikt (14)
bokkapitel (14)
konferensbidrag (4)
bok (2)
visa fler...
annan publikation (1)
visa färre...
Typ av innehåll
refereegranskat (593)
övrigt vetenskapligt/konstnärligt (47)
Författare/redaktör
Ou, Tinghai (49)
Linderholm, Hans W., ... (34)
Wang, L (30)
Azorin-Molina, César (24)
Achberger, Christine ... (20)
visa fler...
Minola, Lorenzo (20)
Walther, Alexander, ... (18)
Yang, K (18)
Lai, Hui-Wen (17)
Liu, J. (16)
Fang, Keyan (16)
Azorin-Molina, C. (15)
Liu, Jian (13)
Li, X. P. (13)
Liu, J. G. (13)
Zhang, Peng (12)
Gao, Ge, 1972 (12)
Shen, Cheng (11)
Li, X. (10)
Zhou, J. (10)
Wang, Lei (10)
Lin, Changgui, 1985 (10)
Zhang, Q. (9)
Ciais, P. (9)
Wang, Bin (9)
Liu, Junguo (9)
Guijarro, J. A. (9)
Xu, Chong Yu (9)
Liao, Y (9)
Borne, Katarina, 196 ... (9)
Yao, T. (9)
Ho, C-H (9)
Zhang, F. (8)
Wang, B. (8)
Pleijel, Håkan, 1958 (8)
Son, S. W. (8)
Hellström, C. (8)
Chen, Hans W. (8)
Chen, Hans, 1988 (8)
Tang, Q. H. (8)
Liu, Y. (7)
Wang, J. (7)
McVicar, T. R. (7)
Piao, Shilong (7)
Yao, Tandong (7)
Miao, Junfeng, 1963 (7)
You, Q. L. (7)
Zhang, Chi (7)
Chen, Aifang, 1990 (7)
visa färre...
Lärosäte
Göteborgs universitet (640)
Chalmers tekniska högskola (39)
Lunds universitet (18)
Stockholms universitet (13)
Uppsala universitet (11)
Linköpings universitet (3)
visa fler...
Sveriges Lantbruksuniversitet (2)
Kungliga Tekniska Högskolan (1)
Nordiska Afrikainstitutet (1)
Örebro universitet (1)
Linnéuniversitetet (1)
visa färre...
Språk
Engelska (600)
Odefinierat språk (25)
Kinesiska (10)
Svenska (5)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (639)
Teknik (5)
Lantbruksvetenskap (5)
Samhällsvetenskap (4)
Humaniora (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy