SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lyssenko Valeriya) "

Sökning: WFRF:(Lyssenko Valeriya)

  • Resultat 101-110 av 154
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
101.
  • Mulder, Hindrik, et al. (författare)
  • Melatonin receptors in pancreatic islets: good morning to a novel type 2 diabetes gene.
  • 2009
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 1432-0428 .- 0012-186X. ; 52, s. 1240-1249
  • Tidskriftsartikel (refereegranskat)abstract
    • Melatonin is a circulating hormone that is primarily released from the pineal gland. It is best known as a regulator of seasonal and circadian rhythms; its levels are high during the night and low during the day. Interestingly, insulin levels also exhibit a nocturnal drop, which has previously been suggested to be controlled, at least in part, by melatonin. This regulation can be explained by the proposed inhibitory action of melatonin on insulin release. Indeed, both melatonin receptor 1A (MTNR1A) and MTNR1B are expressed in pancreatic islets. The role of melatonin in the regulation of glucose homeostasis has been highlighted by three independent publications based on genome-wide association studies of traits connected with type 2 diabetes, such as elevated fasting glucose, and, subsequently, of the disease itself. The studies demonstrate a link between variations in the MTNR1B gene, hyperglycaemia, impaired early phase insulin secretion and beta cell function. The risk genotype predicts the future development of type 2 diabetes. Carriers of the risk genotype exhibit increased expression of MTNR1B in islets. This suggests that these individuals may be more sensitive to the actions of melatonin, leading to impaired insulin secretion. Blocking the inhibition of insulin secretion by melatonin may be a novel therapeutic avenue for type 2 diabetes.
  •  
102.
  • Nagorny, Cecilia, et al. (författare)
  • Tired of Diabetes Genetics? Circadian Rhythms and Diabetes: The MTNR1B Story?
  • 2012
  • Ingår i: Current Diabetes Reports. - : Springer Science and Business Media LLC. - 1539-0829 .- 1534-4827. ; 12:6, s. 667-672
  • Tidskriftsartikel (refereegranskat)abstract
    • Circadian rhythms are ubiquitous in biological systems and regulate metabolic processes throughout the body. Misalliance of these circadian rhythms and the systems they regulate has a profound impact on hormone levels and increases risk of developing metabolic diseases. Melatonin, a hormone secreted by the pineal gland, is one of the major signaling molecules used by the master circadian oscillator to entrain downstream circadian rhythms. Several recent genetic studies have pointed out that a common variant in the gene that encodes the melatonin receptor 2 (MTNR1B) is associated with impaired glucose homeostasis, reduced insulin secretion, and an increased risk of developing type 2 diabetes. Here, we try to review the role of this receptor and its signaling pathways in respect to glucose homeostasis and development of the disease.
  •  
103.
  • Naukkarinen, Jussi, et al. (författare)
  • Functional Variant Disrupts Insulin Induction of USF1 Mechanism for USF1-Associated Dyslipidemias
  • 2009
  • Ingår i: Circulation: Cardiovascular Genetics. - 1942-325X. ; 2:5, s. 245-522
  • Tidskriftsartikel (refereegranskat)abstract
    • Background-The upstream transcription factor 1 (USF1) gene is associated with familial combined hyperlipidemia, the most common genetic dyslipidemia in humans, as well as with various dyslipidemic changes in numerous other studies. Typical of complex disease-associated genes, neither the explicit mutations have been described nor the functional consequences for risk allele carriers been reported at the cellular or tissue level. Methods and Results-In this study, we aimed at describing the molecular mechanism through which the strongest associating intronic single-nucleotide polymorphism variant in USF1 is involved in the development of dyslipidemia. The effects of the risk variant on gene expression were studied in 2 relevant human tissues, fat and muscle. Global transcript profiles of 47 fat biopsies ascertained for carriership of the risk allele were tested for differential expression of known USF1 target genes as well as for broader effects on the transcript profile. Allelic imbalance of USF1 in fat was assessed using a quantitative sequencing approach. The possible allele-specific effect of insulin on the expression of USF1 was studied in 118 muscle biopsies before and after a euglycemic hyperinsulinemic clamp. The risk allele of single-nucleotide polymorphism rs2073658 seems to eradicate the inductive effect of insulin on the expression of USF1 in muscle and fat. The expression of numerous target genes is in turn perturbed in adipose tissue. Conclusions-In risk allele carriers, a defective response of USF1 to insulin results in the suboptimal response of relevant target genes that contributes to the enhanced risk of developing dyslipidemia and coronary heart disease. (Circ Cardiovasc Genet. 2009;2:522-529.)
  •  
104.
  • Olesen, Kasper, et al. (författare)
  • Sense of Coherence is associated with LDL-cholesterol in patients with type 1 diabetes – The PROLONG-Steno study
  • 2017
  • Ingår i: Journal of Clinical and Translational Endocrinology. - : Elsevier BV. - 2214-6237. ; 8, s. 1-5
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim It is a constant challenge for people with type 1 diabetes to maintain appropriate levels of HbA1c, blood pressure and blood lipids in order to prevent or delay deleterious effects of their illness. This study sought to investigate if Sense of Coherence (SOC) is associated with clinical risk factors in people with type 1 diabetes. Methods Questionnaire data, including measure of SOC, was collected from 125 patients with long duration of type 1 diabetes and linked to electronic patient records to obtain clinical measures on HbA1c, blood pressure, and blood lipids. Linear regressions and generalized additive models were applied to explore the associations between SOC and clinical biomarkers. Results Mean age of the participants was 60.7 years (standard deviation = 10.0), 44.0% were men. Medium and high SOC were associated with lower levels of LDL-cholesterol (p = 0.005). This association was non-linear with medium and high levels of SOC being advantageous whereas low SOC was associated with elevated levels of LDL-cholesterol. Moreover, we observed non-significant tendencies to associations between low SOC and low HDL-cholesterol, and elevated HbA1c. Conclusions Findings from this study suggest that high SOC may be protective against elevated LDL-cholesterol among people with type 1 diabetes. Interventions to improve self-management among people with low SOC may prove effective to prevent deterioration of metabolic risk factors.
  •  
105.
  • Omar, Bilal, et al. (författare)
  • Regulation of the pro-inflammatory cytokine osteopontin by GIP in adipocytes - A role for the transcription factor NFAT and phosphodiesterase 3B.
  • 2012
  • Ingår i: Biochemical and Biophysical Research Communications. - : Elsevier BV. - 1090-2104 .- 0006-291X. ; 425:4, s. 812-817
  • Tidskriftsartikel (refereegranskat)abstract
    • The incretin - glucose-dependent insulinotropic polypeptide (GIP) - and the pro-inflammatory cytokine osteopontin are known to have important roles in the regulation of adipose tissue functions. In this work we show that GIP stimulates lipogenesis and osteopontin expression in primary adipocytes. The GIP-induced increase in osteopontin expression was inhibited by the NFAT (the transcription factor nuclear factor of activated T-cells) inhibitor A285222. Also, the NFAT kinase glycogen synthase kinase (GSK) 3 was upregulated by GIP. To test whether cAMP might be involved in GIP mediated effects on osteopontin a number of strategies were used. Thus, the β3-adrenergic receptor aganist CL316,243 stimulated osteopontin expression, an effects which was mimicked by OPC3911, a specific inhibitor of phosphodiesterase 3. Furthermore, treatment of phosphodiesterase 3B knock-out mice with CL316,243 resulted in a dramatic upregulation of osteopontin in adipose tissue which was not the case in wild-type mice. In summary, we delineate mechanisms by which GIP stimulate osteopontin in adipocytes. Given the established link between osteopontin and insulin resistance, our data suggest that GIP by stimulating osteopontin expression, also could promote insulin resistance in adipocytes.
  •  
106.
  • Orho-Melander, Marju, et al. (författare)
  • Common Missense Variant in the Glucokinase Regulatory Protein Gene Is Associated With Increased Plasma Triglyceride and C-Reactive Protein but Lower Fasting Glucose Concentrations
  • 2008
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 57:11, s. 3112-3121
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE-Using the genome-wide association approach, we recently identified the glucokinase regulatory protein gene (GCKR, rs780094) region as a novel quantitative trait locus for plasma triglyceride concentration in Europeans. Here, we sought to study the association of GCKR variants with metabolic phenotypes, including measures of glucose homeostasis, to evaluate the GCYR locus in samples of non-European ancestry and to fine-map across the associated genomic interval. RESEARCH DESIGN AND METHODS-We performed association studies in 12 independent cohorts comprising >45,000 individuals representing several ancestral groups (whites from Northern and Southern Europe, whites from the U.S., African Americans from the U.S., Hispanics of Caribbean origin, and Chinese, Malays, and Asian Indians from Singapore). We conducted genetic fine-mapping across the similar to 417-kb region of linkage disequilibrium. spanning GCKR and 16 other genes on chromosome 2p23 by imputing untyped HapMap single nucleotide polymorphisms (SNPs) and genotyping 104 SNPs across the associated genomic interval. RESULTS-We provide comprehensive evidence that GCYR rs780094 is associated with opposite effects on fasting plasma triglyceride (P-meta = 3 x 10(-56)) and glucose (P-meta = 1 x 10(-13)) concentrations. In addition, we confirmed recent reports that the same SNP is associated with C-reactive protein (CRP) level (P = 5 x 10(-5)). Both fine-mapping approaches revealed a common missense GCKR variant (rs1260326, Pro446Leu, 34% frequency, r(2) = 0.93 with rs780094) as the strongest association signal in the region. CONCLUSIONS-These findings point to a molecular mechanism in humans by which higher triglycerides and CRP can be coupled with lower plasma glucose concentrations and position GCKR in central pathways regulating both hepatic triglyceride and glucose metabolism. Diabetes 57:3112-3121, 2008
  •  
107.
  • Ozgumus, T., et al. (författare)
  • Reduced expression of OXPHOS and DNA damage genes is linked to protection from microvascular complications in long-term type 1 diabetes: the PROLONG study
  • 2021
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Type 1 diabetes is a chronic autoimmune disease requiring insulin treatment for survival. Prolonged duration of type 1 diabetes is associated with increased risk of microvascular complications. Although chronic hyperglycemia and diabetes duration have been considered as the major risk factors for vascular complications, this is not universally seen among all patients. Persons with long-term type 1 diabetes who have remained largely free from vascular complications constitute an ideal group for investigation of natural defense mechanisms against prolonged exposure of diabetes. Transcriptomic signatures obtained from RNA sequencing of the peripheral blood cells were analyzed in non-progressors with more than 30 years of diabetes duration and compared to the patients who progressed to microvascular complications within a shorter duration of diabetes. Analyses revealed that non-progressors demonstrated a reduction in expression of the oxidative phosphorylation (OXPHOS) genes, which were positively correlated with the expression of DNA repair enzymes, namely genes involved in base excision repair (BER) machinery. Reduced expression of OXPHOS and BER genes was linked to decrease in expression of inflammation-related genes, higher glucose disposal rate and reduced measures of hepatic fatty liver. Results from the present study indicate that at transcriptomic level reduction in OXPHOS, DNA repair and inflammation-related genes is linked to better insulin sensitivity and protection against microvascular complications in persons with long-term type 1 diabetes.
  •  
108.
  • Palmer, Nicholette D, et al. (författare)
  • A genome-wide association search for type 2 diabetes genes in African Americans.
  • 2012
  • Ingår i: PloS one. - San Francisco : Public Library of Science (PLoS). - 1932-6203. ; 7:1, s. e29202-
  • Tidskriftsartikel (refereegranskat)abstract
    • African Americans are disproportionately affected by type 2 diabetes (T2DM) yet few studies have examined T2DM using genome-wide association approaches in this ethnicity. The aim of this study was to identify genes associated with T2DM in the African American population. We performed a Genome Wide Association Study (GWAS) using the Affymetrix 6.0 array in 965 African-American cases with T2DM and end-stage renal disease (T2DM-ESRD) and 1029 population-based controls. The most significant SNPs (n = 550 independent loci) were genotyped in a replication cohort and 122 SNPs (n = 98 independent loci) were further tested through genotyping three additional validation cohorts followed by meta-analysis in all five cohorts totaling 3,132 cases and 3,317 controls. Twelve SNPs had evidence of association in the GWAS (P<0.0071), were directionally consistent in the Replication cohort and were associated with T2DM in subjects without nephropathy (P<0.05). Meta-analysis in all cases and controls revealed a single SNP reaching genome-wide significance (P<2.5×10(-8)). SNP rs7560163 (P = 7.0×10(-9), OR (95% CI) = 0.75 (0.67-0.84)) is located intergenically between RND3 and RBM43. Four additional loci (rs7542900, rs4659485, rs2722769 and rs7107217) were associated with T2DM (P<0.05) and reached more nominal levels of significance (P<2.5×10(-5)) in the overall analysis and may represent novel loci that contribute to T2DM. We have identified novel T2DM-susceptibility variants in the African-American population. Notably, T2DM risk was associated with the major allele and implies an interesting genetic architecture in this population. These results suggest that multiple loci underlie T2DM susceptibility in the African-American population and that these loci are distinct from those identified in other ethnic populations.
  •  
109.
  • Parikh, Hemang, et al. (författare)
  • Prioritizing genes for follow-up from genome wide association studies using information on gene expression in tissues relevant for type 2 diabetes mellitus
  • 2009
  • Ingår i: BMC Medical Genomics. - : Springer Science and Business Media LLC. - 1755-8794. ; 2
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Genome-wide association studies (GWAS) have emerged as a powerful approach for identifying susceptibility loci associated with polygenetic diseases such as type 2 diabetes mellitus (T2DM). However, it is still a daunting task to prioritize single nucleotide polymorphisms (SNPs) from GWAS for further replication in different population. Several recent studies have shown that genetic variation often affects gene-expression at proximal (cis) as well as distal (trans) genomic locations by different mechanisms such as altering rate of transcription or splicing or transcript stability. Methods: To prioritize SNPs from GWAS, we combined results from two GWAS related to T2DM, the Diabetes Genetics Initiative (DGI) and the Wellcome Trust Case Control Consortium (WTCCC), with genome-wide expression data from pancreas, adipose tissue, liver and skeletal muscle of individuals with or without T2DM or animal models thereof to identify T2DM susceptibility loci. Results: We identified 1,170 SNPs associated with T2DM with P < 0.05 in both GWAS and 243 genes that were located in the vicinity of these SNPs. Out of these 243 genes, we identified 115 differentially expressed in publicly available gene expression profiling data. Notably five of them, IGF2BP2, KCNJ11, NOTCH2, TCF7L2 and TSPAN8, have subsequently been shown to be associated with T2DM in different populations. To provide further validation of our approach, we reversed the approach and started with 26 known SNPs associated with T2DM and related traits. We could show that 12 (57%) (HHEX, HNF1B, IGF2BP2, IRS1, KCNJ11, KCNQ1, NOTCH2, PPARG, TCF7L2, THADA, TSPAN8 and WFS1) out of 21 genes located in vicinity of these SNPs were showing aberrant expression in T2DM from the gene expression profiling studies. Conclusions: Utilizing of gene expression profiling data from different tissues of individuals with or without T2DM or animal models thereof is a powerful tool for prioritizing SNPs from WGAS for further replication studies.
  •  
110.
  • Perry, John R. B., et al. (författare)
  • Genetic evidence that raised sex hormone binding globulin (SHBG) levels reduce the risk of type 2 diabetes
  • 2010
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 19:3, s. 535-544
  • Tidskriftsartikel (refereegranskat)abstract
    • Epidemiological studies consistently show that circulating sex hormone binding globulin (SHBG) levels are lower in type 2 diabetes patients than non-diabetic individuals, but the causal nature of this association is controversial. Genetic studies can help dissect causal directions of epidemiological associations because genotypes are much less likely to be confounded, biased or influenced by disease processes. Using this Mendelian randomization principle, we selected a common single nucleotide polymorphism (SNP) near the SHBG gene, rs1799941, that is strongly associated with SHBG levels. We used data from this SNP, or closely correlated SNPs, in 27 657 type 2 diabetes patients and 58 481 controls from 15 studies. We then used data from additional studies to estimate the difference in SHBG levels between type 2 diabetes patients and controls. The SHBG SNP rs1799941 was associated with type 2 diabetes [odds ratio (OR) 0.94, 95% CI: 0.91, 0.97; P = 2 x 10(-5)], with the SHBG raising allele associated with reduced risk of type 2 diabetes. This effect was very similar to that expected (OR 0.92, 95% CI: 0.88, 0.96), given the SHBG-SNP versus SHBG levels association (SHBG levels are 0.2 standard deviations higher per copy of the A allele) and the SHBG levels versus type 2 diabetes association (SHBG levels are 0.23 standard deviations lower in type 2 diabetic patients compared to controls). Results were very similar in men and women. There was no evidence that this variant is associated with diabetes-related intermediate traits, including several measures of insulin secretion and resistance. Our results, together with those from another recent genetic study, strengthen evidence that SHBG and sex hormones are involved in the aetiology of type 2 diabetes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 101-110 av 154
Typ av publikation
tidskriftsartikel (133)
konferensbidrag (17)
forskningsöversikt (3)
bokkapitel (1)
Typ av innehåll
refereegranskat (152)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Lyssenko, Valeriya (154)
Groop, Leif (128)
Tuomi, Tiinamaija (44)
Nilsson, Peter (33)
Isomaa, Bo (31)
Almgren, Peter (28)
visa fler...
Laakso, Markku (28)
McCarthy, Mark I (28)
Kuusisto, Johanna (26)
Boehnke, Michael (26)
Jonsson, Anna (25)
Tuomilehto, Jaakko (22)
Prokopenko, Inga (22)
Jackson, Anne U. (22)
Lind, Lars (21)
Wareham, Nicholas J. (21)
Langenberg, Claudia (21)
Grallert, Harald (21)
Gieger, Christian (19)
Altshuler, David (19)
Ahlqvist, Emma (18)
Ladenvall, Claes (18)
Orho-Melander, Marju (18)
Hansen, Torben (18)
Barroso, Ines (18)
Frayling, Timothy M (18)
Lindgren, Cecilia M. (18)
Melander, Olle (17)
Pedersen, Oluf (17)
Mohlke, Karen L (17)
Ingelsson, Erik (17)
Palmer, Colin N. A. (17)
Morris, Andrew D (17)
Illig, Thomas (17)
Collins, Francis S. (17)
Salomaa, Veikko (16)
Thorleifsson, Gudmar (16)
Stefansson, Kari (16)
Meigs, James B. (16)
Isomaa, B. (15)
Thorsteinsdottir, Un ... (15)
Loos, Ruth J F (15)
Bonnycastle, Lori L. (15)
Steinthorsdottir, Va ... (15)
Hattersley, Andrew T (14)
Walker, Mark (14)
Froguel, Philippe (14)
Dupuis, Josée (14)
Voight, Benjamin F. (14)
Morris, Andrew P. (14)
visa färre...
Lärosäte
Lunds universitet (151)
Karolinska Institutet (31)
Uppsala universitet (29)
Umeå universitet (18)
Göteborgs universitet (15)
Stockholms universitet (2)
visa fler...
Chalmers tekniska högskola (2)
Högskolan Dalarna (2)
Malmö universitet (1)
visa färre...
Språk
Engelska (150)
Finska (2)
Svenska (1)
Franska (1)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (151)
Naturvetenskap (4)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy