SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1352 2310 srt2:(2000-2004);pers:(Kristensson Adam)"

Sökning: L773:1352 2310 > (2000-2004) > Kristensson Adam

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gidhagen, L, et al. (författare)
  • Model simulation of ultrafine particles inside a road tunnel
  • 2003
  • Ingår i: Atmospheric Environment. - 1352-2310. ; 37:15, s. 2023-2036
  • Tidskriftsartikel (refereegranskat)abstract
    • A monodispersive aerosol dynamic model, coupled to a 3D hydrodynamical grid model, has been used to study the dynamics of ultrafine particles inside a road tunnel in Stockholm, Sweden. The model results were compared to measured data of particle number concentrations, traffic intensity and tunnel ventilation rate. Coagulation and depositional losses to the tunnel walls were shown to be important processes during traffic peak hours, together contributing to losses of 77% of the particles smaller than 10nm and 41% of the particles of size 10-29nm. Particle growth due to water uptake or the presence of a micron-sized, resuspended particle fraction did not have any significant effect on the number of particles lost due to coagulation. Model simulation of particle number concentration response to temporal variations in traffic flow showed that constant emission factors could be used to reproduce the concentration variations of the particles larger than 29nm, while vehicle-speed-dependent factors are suggested to reproduce the variation of the smallest fractions. The emission factors for particle number concentrations estimated from the model simulation are in general higher and show a larger contribution from light-duty vehicles than what has been reported from a tunnel in California. The model study shows that combined measurements and model simulations in road tunnels can be used to improve the determinations of vehicle emission factors for ultrafine particles under realistic driving conditions. (C) 2003 Elsevier Science Ltd. All rights reserved.
  •  
2.
  • Hedberg, E, et al. (författare)
  • Chemical and physical characterization of emissions from birch wood combustion in a wood stove
  • 2002
  • Ingår i: Atmospheric Environment. - 1352-2310. ; 36:30, s. 4823-4837
  • Tidskriftsartikel (refereegranskat)abstract
    • The purpose of this study was to characterize the emissions of a large number of chemical compounds emitted from birch wood combustion in a wood stove. Birch wood is widely used as fuel in Swedish household appliances. The fuel load was held constant during six experiments. Particles < 2.5 mum diameter were collected and the size distribution of the particles was measured. The results were compared to the size distribution in road traffic emissions. It could be seen that the number distribution differed between the sources. In traffic exhaust, the number of particles maximized at 20 nm, while the number distribution from wood burning ranged from 20 to 300 nm. The ratio K/Ca on particles was found. to be significantly different in wood burning compared to road dust, range 30-330 for the former and 0.8+/-0.15 for the latter. The source profile of common elements emitted from wood-burning differed from that found on particles at a street-level site or in long-distance transported particles. The ratio toluene/benzene in this study was found to be in the range 0.2-0.7, which is much lower than the ratio 3.6+/-0.5 in traffic exhaust emissions. Formaldehyde and acetone were the most abundant compounds among the volatile ketones and aldehydes. The emission factor varied between 180-710mg/kg wood for formaldehyde and 5-1300mg/kg wood for acetone. Of the organic acids analyzed (3,4,5)-trimethoxy benzoic acid was the most abundant compound. Of the PAHs reported, fluorene, phenanthrene, anthracene, fluoranthene and pyrene contribute to more than 70% of the mass of PAH. Of the elements analyzed, K and Si were the most abundant elements, having emission factors of 27 and 9mg/kg wood, respectively. Although fluoranthene has a toxic equivalence factor of 5% of benzo(a)pyrene (B(a)P), it can be seen that the toxic potency of fluoranthene in wood burning emissions is of the same size as B(a)P. This indicates that the relative carcinogenic potency contribution of fluoranthene in wood smoke would be about 40% of B(a)P. (C) 2002 Elsevier Science Ltd. All rights reserved.
  •  
3.
  •  
4.
  • Kristensson, Adam, et al. (författare)
  • Real-world traffic emission factors of gases and particles measured in a road tunnel in Stockholm, Sweden
  • 2004
  • Ingår i: Atmospheric Environment. - : Elsevier BV. - 1352-2310. ; 38:5, s. 657-673
  • Tidskriftsartikel (refereegranskat)abstract
    • Measurements in a road tunnel in Stockholm, Sweden give the real-world traffic emission factors for a number of gaseous and particle pollutants. These include 49 different polycyclic aromatic hydrocarbons (PAH), CO, NOX, benzene, toluene, xylenes, aldehydes, elements and inorganic/organic carbon contained in particles, the sub-micrometer aerosol number size distribution, PM2.5 and PM10. The exhaust pipe emission factors are divided with the help of automated traffic counts into the two pollutant sources, the heavy-duty vehicles (HDV) and light-duty vehicles (LDV). The LDV fleet contains 95% petrol cars and the total fleet contains about 5% HDV. When data permitted, the emission factors were further calculated at different vehicle speeds. The current work shows that average CO, NOX and benzene emission factors amounted to 5.3, 1.4 and 0.017 g veh(-1) km(-1), respectively. Since the mid-90s CO and benzene decreased by about 15%, carbonyls by about a factor 2, whereas NOX did not change much. PAR emission factors were 2-15 times higher than found during dynamometer tests. Most particles are distributed around 20 nm diameter and the LDV fleet contributes to about 65% of both PM and particle number. In general, the gaseous emissions are higher in Sweden than in USA and Switzerland, foremost due to the lower fraction catalytic converters in Sweden. The PM and number emissions of particles are also slightly higher in the Swedish tunnel. (C) 2003 Elsevier Ltd. All rights reserved.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy