SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lyssenko Valeriya) "

Sökning: WFRF:(Lyssenko Valeriya)

  • Resultat 61-70 av 154
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
61.
  • Jonsson, Anna, et al. (författare)
  • A variant in the KCNQ1 gene predicts future type 2 diabetes and mediates impaired insulin secretion.
  • 2009
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 58:10, s. 2409-2413
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective- Two independent genome wide association studies for type 2 diabetes in Japanese have recently identified common variants in the KCNQ1 gene to be strongly associated with type 2 diabetes. Here we studied whether a common variant in KCNQ1 would influence BMI, insulin secretion and action and predict future type 2 diabetes in subjects from Sweden and Finland. Research design and methods- Risk of type 2 diabetes conferred by KCNQ1 rs2237895 was studied in 2,830 type 2 diabetes cases and 3,550 controls from Sweden (Malmö Case-Control) and prospectively in 16,061 individuals from the Malmö Preventive Project (MPP). Association between genotype and insulin secretion/action was assessed cross-sectionally in 3,298 non-diabetic subjects from the PPP-Botnia Study and longitudinally in 2,328 non-diabetic subjects from the Botnia Prospective Study (BPS). KCNQ1 expression (n=18) and glucose-stimulated insulin secretion (n=19) was measured in human islets from non-diabetic cadaver donors. Results. The C-allele of KCNQ1 rs2237895 was associated with increased risk of type 2 diabetes in both the case-control (OR 1.23 [1.12-1.34], p=5.6x10(-6)) and the prospective (OR 1.14 [1.06-1.22], p=4.8x10(-4)) studies. Furthermore, the C-allele was associated with decreased insulin secretion (CIR p=0.013; DI p=0.013) in the PPP-Botnia study and in the BPS at baseline (CIR p=3.6x10(-4); DI p=0.0058) and after follow-up (CIR p=0.0018; DI p=0.0030). C-allele carriers showed reduced glucose-stimulated insulin secretion in human islets (p=2.5x10(-6)). Conclusion. A common variant in the KCNQ1 gene is associated with increased risk of future type 2 diabetes in Scandinavians which partially can be explained by an effect on insulin secretion.
  •  
62.
  • Jonsson, A, et al. (författare)
  • Assessing the effect of interaction between an FTO variant (rs9939609) and physical activity on obesity in 15,925 Swedish and 2,511 Finnish adults.
  • 2009
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 0012-186X .- 1432-0428. ; 52:7, s. 1334-1338
  • Tidskriftsartikel (refereegranskat)abstract
    • AIMS/HYPOTHESIS: Recent reports have suggested that genotypes at the FTO locus interact with physical activity to modify levels of obesity-related traits. We tested this hypothesis in two non-diabetic population-based cohorts, the first from southern Sweden and the second from the Botnia region of western Finland. METHODS: In total 2,511 Finnish and 15,925 Swedish non-diabetic middle-aged adults were genotyped for the FTO rs9939609 variant. Physical activity was assessed by questionnaires and standard clinical procedures were conducted, including measures of height and weight and glucose regulation. Tests of gene x physical activity interaction were performed using linear interaction effects to determine whether the effect of this variant on BMI is modified by physical activity. RESULTS: The minor A allele at rs9939609 was associated with higher BMI in both cohorts, with the per allele difference in BMI being about 0.13 and 0.43 kg/m(2) in the Swedish and Finnish cohorts, respectively (p < 0.0001). The test of interaction between physical activity and the rs9939609 variant on BMI was not statistically significant after controlling for age and sex in either cohort (Sweden: p = 0.71, Finland: p = 0.18). CONCLUSIONS/INTERPRETATION: The present report does not support the notion that physical activity modifies the effects of the FTO rs9939609 variant on obesity risk in the non-diabetic Swedish or Finnish adults studied here.
  •  
63.
  • Jonsson, Anna, et al. (författare)
  • Effect of a common variant of the PCSK2 gene on reduced insulin secretion.
  • 2012
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 1432-0428 .- 0012-186X.
  • Tidskriftsartikel (refereegranskat)abstract
    • AIM/HYPOTHESIS: Individuals at risk of developing type 2 diabetes show a progressive decline in insulin secretion and increased insulin resistance over time. However, inability of the beta cells to compensate for the increased insulin resistance represents a key defect leading to overt type 2 diabetes. The aims of the present study were to replicate the association between genetic variants of the PCSK2 gene and insulin secretion, and to explore the effect on risk of type 2 diabetes. METHODS: Replication of PCSK2 variants against insulin secretion included 7,682 non-diabetic Scandinavian individuals. Insulin secretion was measured as the corrected insulin response or disposition index, i.e. insulin secretion adjusted for the degree of insulin resistance. Risk of type 2 diabetes was studied in 28,287 Scandinavian individuals. RESULTS: The C-allele of PCSK2 rs2208203 was associated with reduced insulin secretion measured as the corrected insulin response (n = 8,151; β = -0.112, p = 1.3 × 10(-6)) as well as disposition index (n = 8,078, β = -0.128, p = 1.6 × 10(-7)). The variant was also associated with lower fasting glucagon levels (β = -0.084, p = 0.005) in non-diabetic individuals with a fasting plasma glucose of over 5.5 mmol/l. In human pancreatic islets, PCSK2 expression correlated negatively with HbA(1c) (n = 133, r = -0.196, p = 0.038), and showed a tendency to be lower in hyperglycaemic (HbA(1c) ≥6.0% or type 2 diabetes; n = 47, p = 0.13) than normoglycaemic (HbA(1c) >6.0%; n = 66) donors. The presence of the PCSK2 rs2208203 risk allele did not influence gene expression, nor did it show an apparent risk in terms of type 2 diabetes. CONCLUSIONS/INTERPRETATION: A variant of the PCSK2 gene was associated with reduced glucose-stimulated insulin secretion, but also with lower glucagon levels, which could potentially counteract the effects of decreased insulin secretion on the risk of type 2 diabetes.
  •  
64.
  • Jonsson, Anna, et al. (författare)
  • Effect of Common Genetic Variants Associated with Type 2 Diabetes and Glycemic Traits on α- and β-cell Function and Insulin Action in Man.
  • 2013
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 62:8, s. 2978-2983
  • Tidskriftsartikel (refereegranskat)abstract
    • Although meta-analyses of genome-wide association studies have identified more than 60 single nucleotide polymorphisms (SNPs) associated with type 2 diabetes and/or glycemic traits, there is little information whether these variants also affect α-cell function. The aim of the present study was to evaluate the effects of glycemia-associated genetic loci on islet function in vivo and in vitro. We studied 43 SNPs in 4,654 normoglycemic participants from the Finnish population-based PPP-Botnia study. Islet function was assessed, in vivo, by measuring insulin and glucagon concentrations during OGTT, and, in vitro, by measuring glucose stimulated insulin and glucagon secretion from human pancreatic islets. Carriers of risk variants in BCL11A, HHEX, ZBED3, HNF1A, IGF1 and NOTCH2 showed elevated, while those in CRY2, IGF2BP2, TSPAN8 and KCNJ11 decreased fasting and/or 2hr glucagon concentrations in vivo. Variants in BCL11A, TSPAN8, and NOTCH2 affected glucagon secretion both in vivo and in vitro. The MTNR1B variant was a clear outlier in the relationship analysis between insulin secretion and action, as well as between insulin, glucose and glucagon. Many of the genetic variants shown to be associated with type 2 diabetes or glycemic traits also exert pleiotropic in vivo and in vitro effects on islet function.
  •  
65.
  •  
66.
  •  
67.
  •  
68.
  • Kalis, Martins, et al. (författare)
  • Variants in the FFAR1 Gene Are Associated with Beta Cell Function
  • 2007
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 2:11
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: The FFAR1 receptor is expressed mainly in pancreatic beta cells and is activated by medium to long chain free fatty acids (FFAs), as well as by thiazolidinediones, resulting in elevated Ca(2+) concentrations and promotion of insulin secretion. These properties suggest that FFAR1 could be a mediator of lipotoxicity and a potential candidate gene for Type 2 diabetes (T2D). We therefore investigated whether variations at the FFAR1 locus are associated with T2D and beta cell function. METHODOLOGY/PRINCIPAL FINDINGS: We re-sequenced the FFAR1 region in 96 subjects (48 healthy and 48 T2D individuals) and found 13 single nucleotide polymorphisms (SNPs) 8 of which were not previously described. Two SNPs located in the upstream region of the FFAR1 gene (rs1978013 and rs1978014) were chosen and genotyped in 1929 patients with T2D and 1405 healthy control subjects. We observed an association of rs1978013 and rs1978014 with insulinogenic index in males (p = 0.024) and females (p = 0.032), respectively. After Bonferroni corrections, no association with T2D was found in the case-control material, however a haplotype consisting of the T-G alleles conferred protection against T2D (p = 0.0010). CONCLUSIONS/SIGNIFICANCE: Variation in the FFAR1 gene may contribute to impaired beta cell function in T2D.
  •  
69.
  • Keindl, Magdalena, et al. (författare)
  • Increased Plasma Soluble Interleukin-2 Receptor Alpha Levels in Patients With Long-Term Type 1 Diabetes With Vascular Complications Associated With IL2RA and PTPN2 Gene Polymorphisms
  • 2020
  • Ingår i: Frontiers in Endocrinology. - : Frontiers Media S.A.. - 1664-2392. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Type 1 diabetes (T1D) is largely considered an autoimmune disease leading to the destruction of insulin-producing pancreatic beta cells. Further, patients with T1D have 3-4-fold increased risk of developing micro- and macrovascular complications. However, the contribution of immune-related factors contributing to these diabetes complications are poorly understood. Individuals with long-term T1D who do not progress to vascular complications offer a great potential to evaluate end-organ protection. The aim of the present study was to investigate the association of inflammatory protein levels with vascular complications (retinopathy, nephropathy, cardiovascular disease) in individuals with long-term T1D compared to individuals who rapidly progressed to complications. We studied a panel of inflammatory markers in plasma of patients with long-term T1D with (n = 81 and 26) and without (n = 313 and 25) vascular complications from two cross-sectional Scandinavian cohorts (PROLONG and DIALONG) using Luminex technology. A subset of PROLONG individuals (n = 61) was screened for circulating immune cells using multicolor flow cytometry. We found that elevated plasma levels of soluble interleukin-2 receptor alpha (sIL-2R) were positively associated with the complication phenotype. Risk carriers of polymorphisms in the IL2RA and PTPN2 gene region had elevated plasma levels of sIL-2R. In addition, cell surface marker analysis revealed a shift from naive to effector T cells in T1D individuals with vascular complications as compared to those without. In contrast, no difference between the groups was observed either in IL-2R cell surface expression or in regulatory T cell population size. In conclusion, our data indicates that IL2RA and PTPN2 gene variants might increase the risk of developing vascular complications in people with T1D, by affecting sIL-2R plasma levels and potentially lowering T cell responsiveness. Thus, elevated sIL-2R plasma levels may serve as a biomarker in monitoring the risk for developing diabetic complications and thereby improve patient care.
  •  
70.
  • Koeck, Thomas, et al. (författare)
  • A common variant in TFB1M is associated with reduced insulin secretion and increased future risk of type 2 diabetes.
  • 2011
  • Ingår i: Cell Metabolism. - : Elsevier BV. - 1550-4131 .- 1932-7420. ; 13:1, s. 80-91
  • Tidskriftsartikel (refereegranskat)abstract
    • Type 2 diabetes (T2D) evolves when insulin secretion fails. Insulin release from the pancreatic β cell is controlled by mitochondrial metabolism, which translates fluctuations in blood glucose into metabolic coupling signals. We identified a common variant (rs950994) in the human transcription factor B1 mitochondrial (TFB1M) gene associated with reduced insulin secretion, elevated postprandial glucose levels, and future risk of T2D. Because islet TFB1M mRNA levels were lower in carriers of the risk allele and correlated with insulin secretion, we examined mice heterozygous for Tfb1m deficiency. These mice displayed lower expression of TFB1M in islets and impaired mitochondrial function and released less insulin in response to glucose in vivo and in vitro. Reducing TFB1M mRNA and protein in clonal β cells by RNA interference impaired complexes of the mitochondrial oxidative phosphorylation system. Consequently, nutrient-stimulated ATP generation was reduced, leading to perturbed insulin secretion. We conclude that a deficiency in TFB1M and impaired mitochondrial function contribute to the pathogenesis of T2D.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 61-70 av 154
Typ av publikation
tidskriftsartikel (133)
konferensbidrag (17)
forskningsöversikt (3)
bokkapitel (1)
Typ av innehåll
refereegranskat (152)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Lyssenko, Valeriya (154)
Groop, Leif (128)
Tuomi, Tiinamaija (44)
Nilsson, Peter (33)
Isomaa, Bo (31)
Almgren, Peter (28)
visa fler...
Laakso, Markku (28)
McCarthy, Mark I (28)
Kuusisto, Johanna (26)
Boehnke, Michael (26)
Jonsson, Anna (25)
Tuomilehto, Jaakko (22)
Prokopenko, Inga (22)
Jackson, Anne U. (22)
Lind, Lars (21)
Wareham, Nicholas J. (21)
Langenberg, Claudia (21)
Grallert, Harald (21)
Gieger, Christian (19)
Altshuler, David (19)
Ahlqvist, Emma (18)
Ladenvall, Claes (18)
Orho-Melander, Marju (18)
Hansen, Torben (18)
Barroso, Ines (18)
Frayling, Timothy M (18)
Lindgren, Cecilia M. (18)
Melander, Olle (17)
Pedersen, Oluf (17)
Mohlke, Karen L (17)
Ingelsson, Erik (17)
Palmer, Colin N. A. (17)
Morris, Andrew D (17)
Illig, Thomas (17)
Collins, Francis S. (17)
Salomaa, Veikko (16)
Thorleifsson, Gudmar (16)
Stefansson, Kari (16)
Meigs, James B. (16)
Isomaa, B. (15)
Thorsteinsdottir, Un ... (15)
Loos, Ruth J F (15)
Bonnycastle, Lori L. (15)
Steinthorsdottir, Va ... (15)
Hattersley, Andrew T (14)
Walker, Mark (14)
Froguel, Philippe (14)
Dupuis, Josée (14)
Voight, Benjamin F. (14)
Morris, Andrew P. (14)
visa färre...
Lärosäte
Lunds universitet (151)
Karolinska Institutet (31)
Uppsala universitet (29)
Umeå universitet (18)
Göteborgs universitet (15)
Stockholms universitet (2)
visa fler...
Chalmers tekniska högskola (2)
Högskolan Dalarna (2)
Malmö universitet (1)
visa färre...
Språk
Engelska (150)
Finska (2)
Svenska (1)
Franska (1)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (151)
Naturvetenskap (4)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy