SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1680 7316 srt2:(2009)"

Sökning: L773:1680 7316 > (2009)

  • Resultat 1-10 av 21
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ahlm, Lars, 1976-, et al. (författare)
  • Aerosol number fluxes over the Amazon rain forest during the wet season
  • 2009
  • Ingår i: Atmospheric Chemistry And Physics. - 1680-7316 .- 1680-7324. ; 9:24, s. 9381-9400
  • Tidskriftsartikel (refereegranskat)abstract
    • Number fluxes of particles with diameter larger than 10 nm were measured with the eddy covariance method over the Amazon rain forest during the wet season as part of the LBA (The Large Scale Biosphere Atmosphere Experiment in Amazonia) campaign 2008. The primary goal was to investigate whether sources or sinks dominate the aerosol number flux in the tropical rain forest-atmosphere system. During the measurement campaign, from 12 March to 18 May, 60% of the particle fluxes pointed downward, which is a similar fraction to what has been observed over boreal forests. The net deposition flux prevailed even in the absolute cleanest atmospheric conditions during the campaign and therefore cannot be explained only by deposition of anthropogenic particles. The particle transfer velocity vt increased with increasing friction velocity and the relation is described by the equation vt=2.4×10−3×u* where u* is the friction velocity. Upward particle fluxes often appeared in the morning hours and seem to a large extent to be an effect of entrainment fluxes into a growing mixed layer rather than primary aerosol emission. In general, the number source of primary aerosol particles within the footprint area of the measurements was small, possibly because the measured particle number fluxes reflect mostly particles less than approximately 200 nm. This is an indication that the contribution of primary biogenic aerosol particles to the aerosol population in the Amazon boundary layer may be low in terms of number concentrations. However, the possibility of horizontal variations in primary aerosol emission over the Amazon rain forest cannot be ruled out.
  •  
2.
  • Boman, Johan, 1955, et al. (författare)
  • Elemental content of PM2.5 aerosol particles collected in Göteborg during the Göte-2005 campaign in February 2005
  • 2009
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 9, s. 2597-2606
  • Tidskriftsartikel (refereegranskat)abstract
    • The Göte-2005 measurement campaign aimed at studying the influence of the winter thermal inversions on urban air pollution. Elemental speciation of PM2.5 aerosol particles, collected on Teflon filters at three urban sites and one rural site in the Göteborg region, was a major part of the study. Trace element analysis was done by Energy Dispersive X-Ray Fluorescence (EDXRF) spectrometry and the concentrations of S, Cl, K, Ca, Ti, V, Mn, Fe, Ni, Cu, Zn, Br and Pb were determined. The elemental content of the particles, local wind speed and direction, and backward trajectories were used to investigate possible sources for the pollutants. We concluded that S, V, Ni, Br, and Pb had their main sources outside the central Göteborg area, since elevated concentrations of these elements were not observed during an inversion episode. Sea traffic and harbour activities were identified, primarily by the S and V content of the particles. This study showed that the elemental analysis by EDXRF presents valuable information for tracing the origin of air masses arriving at a measurement site.
  •  
3.
  •  
4.
  • Ekström, Sanna, et al. (författare)
  • The Cloud Condensation Nuclei (CCN) properties of 2-methyltetrols and C3-C6 polyols from osmolality and surface tension measurements
  • 2009
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 9:3, s. 973-980
  • Tidskriftsartikel (refereegranskat)abstract
    • A significant fraction of the organic material in aerosols is made of highly soluble compounds such as sugars (mono-and polysaccharides) and polyols such as the 2-methyltetrols, methylerythritol and methyltreitol. Because of their high solubility these compounds are considered as potentially efficient CCN material. For the 2-methyltetrols, this would have important implications for cloud formation at global scale because they are thought to be produced by the atmospheric oxidation of isoprene. To investigate this question, the complete Kohler curves for C3-C6 polyols and the 2-methyltetrols have been determined experimentally from osmolality and surface tension measurements. Contrary to what was expected, none of these compounds displayed a higher CCN efficiency than organic acids. Their Raoult terms show that this limited CCN efficiency is due to their absence of dissociation in water, this in spite of slight surface-tension effects for the 2-methyltetrols. Thus, compounds such as saccharides and polyols would not contribute more to cloud formation than other organic compounds studied so far. In particular, the presence of 2-methyltetrols in aerosols would not particularly enhance cloud formation in the atmosphere, in contrary to recently suggested
  •  
5.
  • Engström, Anders, 1982-, et al. (författare)
  • Estimating trajectory uncertainties due to flow dependent errors in the atmospheric analysis
  • 2009
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 9:22, s. 8857-8867
  • Tidskriftsartikel (refereegranskat)abstract
    • The uncertainty of a calculated trajectory is dependent on the uncertainty in the atmospheric analysis. Using the Ensemble Transform method (originally adapted for ensemble forecasting) we sample the analysis uncertainty in order to create an ensemble of analyses where a trajectory is started from each perturbed analysis. This method, called the Ensemble analysis method (EA), is compared to the Initial spread method (IS), where the trajectory receptor point is perturbed in the horizontal and vertical direction to create a set of trajectories used to estimate the trajectory uncertainty. The deviation growth is examined for one summer and one winter month and for 15 different geographical locations. We find up to a 40% increase in trajectory deviation in the mid-latitudes using the EA method. A simple model for trajectory deviation growth speed is set up and validated. It is shown that the EA method result in a faster error growth compared to the IS method. In addition, two case studies are examined to qualitatively illustrate how the flow dependent analysis uncertainty can impact the trajectory calculations. We find a more irregular behavior for the EA trajectories compared to the IS trajectories and a significantly increased uncertainty in the trajectory origin. We conclude that by perturbing the analysis in agreement with the analysis uncertainties the error in backward trajectory calculations can be more consistently estimated.
  •  
6.
  • Hallquist, Mattias, 1969, et al. (författare)
  • The formation, properties and impact of secondary organic aerosol: Current and emerging issues
  • 2009
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 9:14, s. 5155-5236
  • Tidskriftsartikel (refereegranskat)abstract
    • Secondary organic aerosol (SOA) accounts for a significant fraction of ambient tropospheric aerosol and a detailed knowledge of the formation, properties and transformation of SOA is therefore required to evaluate its impact on atmospheric processes, climate and human health. The chemical and physical processes associated with SOA formation are complex and varied, and, despite considerable progress in recent years, a quantitative and predictive understanding of SOA formation does not exist and therefore represents a major research challenge in atmospheric science. This review begins with an update on the current state of knowledge on the global SOA budget and is followed by an overview of the atmospheric degradation mechanisms for SOA precursors, gas-particle partitioning theory and the analytical techniques used to determine the chemical composition of SOA. A survey of recent laboratory, field and modeling studies is also presented. The following topical and emerging issues are highlighted and discussed in detail: molecular characterization of biogenic SOA constituents, condensed phase reactions and oligomerization, the interaction of atmospheric organic components with sulfuric acid, the chemical and photochemical processing of organics in the atmospheric aqueous phase, aerosol formation from real plant emissions, interaction of atmospheric organic components with water, thermodynamics and mixtures in atmospheric models. Finally, the major challenges ahead in laboratory, field and modeling studies of SOA are discussed and recommendations for future research directions are proposed.
  •  
7.
  • Hussein, T., et al. (författare)
  • Time span and spatial scale of regional new particle formation events over Finland and Southern Sweden
  • 2009
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 9:14, s. 4699-4716
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigated the time span and spatial scale of regional new particle formation (NPF) events in Finland and Southern Sweden using measured particle number size distributions at five background stations. We define the time span of a NPF event as the time period from the first moment when the newly formed mode of aerosol particles is observable below 25 nm until the newly formed mode is not any more distinguishable from other background modes of aerosol particles after growing to bigger sizes. We identify the spatial scale of regional NPF events based on two independent approaches. The first approach is based on the observation within a network of stationary measurement stations and the second approach is based on the time span and the history of air masses back-trajectories. According to the second approach, about 60% and 28% of the events can be traced to distances longer than 220 km upwind from where the events were observed in Southern Finland (Hyytiälä) and Northern Finland (Värriö), respectively. The analysis also showed that the observed regional NPF events started over the continents but not over the Atlantic Ocean. The first approach showed that although large spatial scale NPF events are frequently observed at several locations simultaneously, they are rarely identical (similar characteristics and temporal variations) due to differences in the initial meteorological and geographical conditions between the stations. The growth of the newly formed particles during large spatial scale events can be followed for more than 30 h where the newly formed aerosol particles end up in the Aitken mode (diameter 25–100 nm) and accumulation mode size ranges (diameter 0.1–1 μm). This study showed clear evidence that regional NPF events can pose a significant source for accumulation mode particles over the Scandinavian continent provided that these findings can be generalized to many of the air masses traveling over the European continent.
  •  
8.
  • Jin, J.J., et al. (författare)
  • Comparison of CMAM simulations of carbon monoxide (CO), nitrous oxide (N2O), and methane (CH4) with observations from Odin/SMR, ACE-FTS, and Aura/MLS
  • 2009
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 9, s. 3233-3252
  • Tidskriftsartikel (refereegranskat)abstract
    • Simulations of CO, N2O and CH4 from a coupled chemistry-climate model (CMAM) are compared with satellite measurements from Odin Sub-Millimeter Radiometer (Odin/SMR), Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS), and Aura Microwave Limb Sounder (Aura/MLS). Pressure-latitude cross-sections and seasonal time series demonstrate that CMAM reproduces the observed global CO, N2O, and CH4 distributions quite well. Generally, excellent agreement with measurements is found between CO simulations and observations in the stratosphere and mesosphere. Differences between the simulations and the ACE-FTS observations are generally within 30%, and the differences between CMAM results and SMR and MLS observations are slightly larger. These differences are comparable with the difference between the instruments in the upper stratosphere and mesosphere. Comparisons of N2O show that CMAM results are usually within 15% of the measurements in the lower and middle stratosphere, and the observations are close to each other. However, the standard version of CMAM has a low N2O bias in the upper stratosphere. The CMAM CH4 distribution also reproduces the observations in the lower stratosphere, but has a similar but smaller negative bias in the upper stratosphere. The negative bias may be due to that the gravity drag is not fully resolved in the model. The simulated polar CO evolution in the Arctic and Antarctic agrees with the ACE and MLS observations. CO measurements from 2006 show evidence of enhanced descent of air from the mesosphere into the stratosphere in the Arctic after strong stratospheric sudden warmings (SSWs). CMAM also shows strong descent of air after SSWs. In the tropics, CMAM captures the annual oscillation in the lower stratosphere and the semiannual oscillations at the stratopause and mesopause seen in Aura/MLS CO and N2O observations and in Odin/SMR N2O observations. The Odin/SMR and Aura/MLS N2O observations also show a quasi-biennial oscillation (QBO) in the upper stratosphere, whereas, the CMAM does not have QBO included. This study confirms that CMAM is able to simulate middle atmospheric transport processes reasonably well.
  •  
9.
  • Johansson, Mattias Erik, 1980, et al. (författare)
  • Mobile mini-DOAS measurement of the outflow of NO2 and HCHO from Mexico City
  • 2009
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 9, s. 5647-5653
  • Tidskriftsartikel (refereegranskat)abstract
    • We here present the results from mobile measurements using two ground-based zenith viewing Differential Optical Absorption Spectroscopy (DOAS) instruments. The measurement was performed in a cross-section of the plume from the Mexico City Metropolitan Area (MCMA) on 10 March 2006 as part of the MILAGRO field campaign. The two instruments operated in the UV and the visible wavelength region respectively and have been used to derive the differential vertical columns of HCHO and NO2 above the measurement route. This is the first time the mobile mini-DOAS instrument has been able to measure HCHO, one of the chemically most important and interesting gases in the polluted urban atmosphere.Using a mass-averaged wind speed and wind direction from the WRF model the instantaneous flux of HCHO and NO2 has been calculated from the measurements and the results are compared to the CAMx chemical model. The calculated flux through the measured cross-section was 1.9 (1.5–2.2) kg/s of HCHO and 4.4 (4.0–5.0) kg/s of NO2 using the UV instrument and 3.66 (3.63–3.73) kg/s of NO2 using the visible light instrument. The modeled values from CAMx for the outflow of both NO2 and HCHO, 1.1 and 3.6 kg/s, respectively, show a reasonable agreement with the measurement derived fluxes.
  •  
10.
  • Jones, Ashley, 1977, et al. (författare)
  • Evolution of stratospheric ozone and water vapour time series studied with satellite measurements
  • 2009
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 9, s. 6055-6075
  • Tidskriftsartikel (refereegranskat)abstract
    • The long term evolution of stratospheric ozone and water vapour has been investigated by extending satellite time series to April 2008. For ozone, we examine monthly average ozone values from various satellite data sets for nine latitude and altitude bins covering 60° S to 60° N and 20–45 km and covering the time period of 1979–2008. Data are from the Stratospheric Aerosol and Gas Experiment (SAGE I+II), the HALogen Occultation Experiment (HALOE), the Solar BackscatterUltraViolet-2 (SBUV/2) instrument, the Sub-Millimetre Radiometer (SMR), the Optical Spectrograph InfraRed Imager System (OSIRIS), and the SCanning Imaging Absorption spectroMeter for Atmospheric CHartograpY (SCIAMACHY). Monthly ozone anomalies are calculated by utilising a linear regression model, which also models the solar, quasi-biennial oscillation (QBO), and seasonal cycle contributions. Individual instrument ozone anomalies are combined producing an all instrument average. Assuming a turning point of 1997 and that the all instrument average is represented by good instrumental long term stability, the largest statistically significant ozone declines (at two sigma) from 1979–1997 are seen at the mid-latitudes between 35 and 45 km, namely −7.2%±0.9%/decade in the Northern Hemisphere and −7.1%±0.9%/in the Southern Hemisphere. Furthermore, for the period 1997 to 2008 we find that the same locations show the largest ozone recovery (+1.4% and +0.8%/decade respectively) compared to other global regions, although the estimated trend model errors indicate that the trend estimates are not significantly different from a zero trend at the 2 sigma level. An all instrument average is also constructed from water vapour anomalies during 1991–2008, using the SAGE II, HALOE, SMR, and the Microwave Limb Sounder (Aura/MLS) measurements. We report that the decrease in water vapour values after 2001 slows down around 2004–2005 in the lower tropical stratosphere (20–25 km) and has even shown signs of increasing until present. We show that a similar correlation is also seen with the temperature measured at 100 hPa during this same period.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 21

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy