SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "LAR1:uu ;srt2:(2005-2009);pers:(Cabric Sanja)"

Sökning: LAR1:uu > (2005-2009) > Cabric Sanja

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cabric, Sanja, et al. (författare)
  • A new method for incorporating functional heparin onto the surface of islets of Langerhans
  • 2008
  • Ingår i: Tissue Engineering. Part C, Methods. - : Mary Ann Liebert Inc. - 1937-3384 .- 1937-3392. ; 14:2, s. 141-147
  • Tidskriftsartikel (refereegranskat)abstract
    • A novel technique is described to conjugate macromolecular heparin complexes to cell surfaces. The method is based on the dual properties of avidin-expressing binding sites for both biotin and a macromolecular complex of heparin. A quartz crystal microbalance with dissipation monitoring (QCM-D) revealed sequential binding of biotin, avidin, and heparin complexes. Large particle flow cytometry confirmed functional integrity. Confocal microscopy of the heparinized islets showed evenly distributed fluorescence. An in vitro Chandler loop model demonstrated that the biocompatibility of the new method is comparable to the previous method used on artificial materials with regard to coagulation and antithrombin uptake. The technique presented allows human islets of Langerhans to successfully be covered with functional heparin as a means to reduce instant blood-mediated inflammatory reactions induced by the innate immune system.
  •  
2.
  • Cabric, Sanja, et al. (författare)
  • Adenovirus-Mediated Expression of the Anticoagulant Hirudin in Human Islets : A Tool to Make the Islets Biocompatible to Blood
  • 2006
  • Ingår i: Cell Transplantation. - 0963-6897 .- 1555-3892. ; 15:8-9, s. 759-767
  • Tidskriftsartikel (refereegranskat)abstract
    • Human islets induce an injurious clotting reaction at the time of transplantation. A potential strategy to counteract this reaction would be to allow the islets to express hirudin, a protein with direct anticoagulative activity. Human islets were transduced with an adenoviral vector encoding hirudin, an empty corresponding vector, or left untreated. Islet culture supernatants were analyzed for hirudin using an ELISA, a chromogenic substrate assay based on the thrombin-binding properties of hirudin and in a whole blood viscosimetry assay. Immunohistochemical evaluation and determination of hirudin content revealed an abundant expression of hirudin after transduction. Hirudin content in transduced islets was in the range of the insulin content levels. A delay in human whole blood clotting time could be observed after addition of supernatants taken from islet cultures expressing hirudin. However, transduced islets showed an impaired glucose-stimulated insulin release, but could readily be retrieved 6 weeks after transplantation to athymic mice. A marked expression and secretion of hirudin with functional capacity can be induced in human islets using an adenoviral vector. The impairment in glucose-stimulated insulin release in hirudin-secreting islets, compared to controls, indicates that the additional protein synthesis affects the functional capacity of the islets.
  •  
3.
  • Cabric, Sanja, et al. (författare)
  • Islet Surface Heparinization Prevents the Instant-Blood Mediated Inflammatory Reaction in Islet Transplantation
  • 2007
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 56:8, s. 2008-2015
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE—In clinical islet transplantation, the instant blood-mediated inflammatory reaction (IBMIR) is a major factor contributing to the poor initial engraftment of the islets. This reaction is triggered by tissue factor and monocyte chemoattractant protein (MCP)-1, expressed by the transplanted pancreatic islets when the islets come in contact with blood in the portal vein. All currently identified systemic inhibitors of the IBMIR are associated with a significantly increased risk of bleeding or other side effects. To avoid systemic treatment, the aim of the present study was to render the islet graft blood biocompatible by applying a continuous heparin coating to the islet surface.RESEARCH DESIGN AND METHODS—A biotin/avidin technique was used to conjugate preformed heparin complexes to the surface of pancreatic islets. This endothelial-like coating was achieved by conjugating barely 40 IU heparin per full-size clinical islet transplant.RESULTS—Both in an in vitro loop model and in an allogeneic porcine model of clinical islet transplantation, this heparin coating provided protection against the IBMIR. Culturing heparinized islets for 24 h did not affect insulin release after glucose challenge, and heparin-coated islets cured diabetic mice in a manner similar to untreated islets.CONCLUSIONS—This novel pretreatment procedure prevents intraportal thrombosis and efficiently inhibits the IBMIR without increasing the bleeding risk and, unlike other pretreatment procedures (e.g., gene therapy), without inducing acute or chronic toxicity in the islets.
  •  
4.
  • Cabric, Sanja, 1977- (författare)
  • Pancreatic Islet Transplantation : Modifications of Islet Properties to Improve Graft Survival
  • 2007
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • During the past decade clinical islet transplantation has become a viable strategy for curing type 1 diabetes. The limited supply of organs, together with the requirement for islets from multiple donors to achieve insulin independence, has greatly limited the application of this approach. The islets are infused into the liver via the portal vein, and once exposed to the blood, the grafted tissue has been shown to be damaged by the instant blood-mediated inflammatory reaction (IBMIR), which is characterized by coagulation and complement activation as well as leukocyte infiltration into the islets. Islet revascularization is a subsequent critical step for the long-term function of the transplanted graft, which may partially be impeded by the IBMIR. In this thesis, we have explored novel strategies for circumventing the effects of the IBMIR and facilitating islet revascularization. Systemic inhibitors of the IBMIR are typically associated with an increased risk of bleeding. We therefore evaluated alternative strategies for modulating the islets prior to transplantation. We demonstrated, using an adenoviral vector, that a high level of expression and secretion of the anticoagulant hirudin could be induced in human islets. An alternative approach to limiting the IBMIR was developed in which anticoagulant macromolecular heparin complexes were conjugated to the islet surface. This technique proved effective in limiting the IBMIR in both an in vitro blood loop model and an allogeneic porcine model of islet transplantation. An increased adhesion of endothelial cells to the heparin-coated islet surface was demonstrated, as was the capacity of the heparin conjugate to bind the angiogenic factors VEGF and FGF; these results have important implications for the revascularization process. The outcome of the work in this thesis suggests that modulation of the islet surface is an attractive alternative to systemic therapy as a strategy for preventing the IBMIR. Moreover, the same techniques can be employed to induce revascularization and improve the engraftment of the transplanted islets. Ultimately, improved islet viability and engraftment will make islet transplantation a more effective procedure and increase the number of patients whose diabetes can be cured.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy