SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Inganäs Olle) ;hsvcat:4"

Sökning: WFRF:(Inganäs Olle) > Lantbruksvetenskap

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ajjan Godoy, Fátima Nadia (författare)
  • Biohybrid Polymer Electrodes for Renewable Energy Storage
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Daily and seasonally fluctuating energy supply and demand requires adequate energy storage solutions. In recent years electrochemical supercapacitors have attracted considerable attention due to their ability to both store and deliver electrical energy efficiently. Our efforts are focused on developing and optimizing sustainable organic electrode materials for supercapacitors based on renewable bioorganic materials, offering a cheap, environmentally friendly and scalable alternative to store energy. In particular, we are using the second most abundant biopolymer in nature, lignin (Lig), which is an insulating material. However, when used in combination with electroactive and conducting polymers such as polypyrrole (PPy) and poly(3,4-ethylenedioxythiophene) (PEDOT), the biohybrid electrodes PPy/Lig and PEDOT/Lig display significantly enhanced energy storage performance as compared to the pristine conducting polymers without the lignin. Redox cyclic voltammetry and galvanostatic charge/discharge measurements indicate that the enhanced performance is due to the additional pseudocapacitance generated by the quinone moieties in lignin. Moreover, a conjugated redoxpolymer poly(aminoanthraquinone) PAAQ, with intrinsic quinone functions and excellentstability, has been combined with lignin and PEDOT resulting in a trihybrid bioelectrode. PEDOT compensates the low conductivity of PAAQ and provides electrical pathways to the quinone groups. The electrochemically generated quinones undergo a two electron, two protonredox process within the biohybrid electrodes as revealed by FTIR spectroelectrochemistry.These remarkable features reveal the exciting potential of a full organic energy storage device with long cycle life. Therefore, supercapacitor devices were designed in symmetric or asymmetric two electrode configuration. The best electrochemical performance was achieved by the asymmetric supercapacitor based on PEDOT+Lignin/PAAQ as the positive electrode and PEDOT/PAAQ as the negative electrode. This device exhibits superior electrochemical performance and outstanding stability after 10000 charge/discharge cycles due to the synergistic effect of the two electrodes. Finally, we have characterized the response of this supercapacitor device when charged with the intermittent power supply from an organic photovoltaic module. We have designed charging/discharging conditions such that reserve power was available in the storage device at all times. This work has resulted in an inexpensive fully organic system witht he dual function of energy conversion and storage.
  •  
2.
  • Wigenius, Jens, et al. (författare)
  • Protein biochips patterned by microcontact printing or by adsorption-soft lithography in two modes
  • 2008
  • Ingår i: Biointerphases. - : American Vacuum Society. - 1934-8630 .- 1559-4106. ; 3:3, s. 75-82
  • Tidskriftsartikel (refereegranskat)abstract
    • Patterning of proteins is critical to protein biochips. Printing of layers of proteins is well established, as is adsorption of proteins to surfaces properly modified with surface chemical functionalities. The authors show that simple methods based on soft lithography stamps can be used to prepare functional antibody chips through both these routes. Both methods incorporate transfer of the stamp material poly(dimethylsiloxane) (PDMS) to the biochip, whether intended or not intended. The results indicate that microcontact printing of proteins always includes PDMS transfer, thereby creating a possibility of unspecific adsorption to a hydrophobic domain. © 2008 American Vacuum Society.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy