SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Inganäs Olle) ;lar1:(kth)"

Sökning: WFRF:(Inganäs Olle) > Kungliga Tekniska Högskolan

  • Resultat 1-10 av 27
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Asplund, Maria, 1978-, et al. (författare)
  • Biocompatibility of PEDOT/biomolecular composites intended for neural communication electrodes
  • Annan publikation (populärvet., debatt m.m.)abstract
    • Electrodes of the conjugated polymer poly(3,4-ethylene dioxythiophene) (PEDOT) have been shown to possess very attractive electrochemical properties for functional electrical stimulation (FES) or recording in the nervous system. Biomolecules already present in nervous tissue, added as counter ions in PEDOT electropolymerisation, could be a route to further improve the biomaterial properties of PEDOT, eliminating the need of surfactant counter ions like docedyl benzene sulphonate (DBS) or polystyrene sulphonate (PSS) in the polymerisation process. Such PEDOT/biomolecular composites using heparin, or hyaluronic acid, have been electrochemically investigated in a previous study and have been shown to retain the attractive electrochemical properties already proven for PEDOT:PSS.   The aim of the present study is to evaluate biocompatibility of these PEDOT/biomolecular composites in vitro and also evaluate PEDOT:heparin biocompatibility in cortical tissue in vivo. Hereby, we also aim to identify a suitable test protocol, that can be used in future evaluations when further material developments are made.   Material toxicity was first tested on cell lines, both through a standardised agarose overlay assay on L929 fibroblasts, and through elution tests on human neuroblastoma SH-SY5Y cells. Subsequently, a biocompatibility in vivo test was performed using PEDOT:heparin coated platinum probes implanted in the cerebral cortex of Sprague-Dawley rats. Tissue was collected at three weeks and six weeks of implantation and evaluated by immunohistochemistry.   No cytotoxic response was seen to any of the PEDOT:biomolecular composites tested here. Furthermore, elution tests were found to be a practical and effective way of screening materials for toxicity and had a clear advantage over the agarose overlay assay, which was difficult to apply on other cell types than fibroblasts. Elution tests would therefore be recommendable as a screening method, at all stages of material development. In the in vivo tests, the stiffness of the platinum substrate was a significant problem, and extensive glial scarring was seen in most cases irrespective of implant material. However, quantification of immunological response through distance measurements from implant site to closest neuron, and counting of macrophage densities in proximity to polymer surface, was comparable to those of platinum controls. These results indicate that PEDOT:heparin surfaces were as compatible with cortical tissue as pure platinum controls.
  •  
2.
  • Asplund, Maria, 1978-, et al. (författare)
  • Composite biomolecule/PEDOT materials for neural electrodes
  • 2008
  • Ingår i: Biointerphases. - NY : American Institute of Physics. - 1559-4106 .- 1934-8630. ; 3:3, s. 83-93
  • Tidskriftsartikel (refereegranskat)abstract
    • Electrodes intended for neural communication must be designed to meet boththe electrochemical and biological requirements essential for long term functionality. Metallic electrode materials have been found inadequate to meet theserequirements and therefore conducting polymers for neural electrodes have emergedas a field of interest. One clear advantage with polymerelectrodes is the possibility to tailor the material to haveoptimal biomechanical and chemical properties for certain applications. To identifyand evaluate new materials for neural communication electrodes, three chargedbiomolecules, fibrinogen, hyaluronic acid (HA), and heparin are used ascounterions in the electrochemical polymerization of poly(3,4-ethylenedioxythiophene) (PEDOT). The resultingmaterial is evaluated electrochemically and the amount of exposed biomoleculeon the surface is quantified. PEDOT:biomolecule surfaces are also studiedwith static contact angle measurements as well as scanning electronmicroscopy and compared to surfaces of PEDOT electrochemically deposited withsurfactant counterion polystyrene sulphonate (PSS). Electrochemical measurements show that PEDOT:heparinand PEDOT:HA, both have the electrochemical properties required for neuralelectrodes, and PEDOT:heparin also compares well to PEDOT:PSS. PEDOT:fibrinogen isfound less suitable as neural electrode material.
  •  
3.
  • Asplund, Maria, 1978- (författare)
  • Conjugated Polymers for Neural Interfaces : Prospects, possibilities and future challenges
  • 2009
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Within the field of neuroprosthetics the possibility to use implanted electrodes for communication with the nervous system is explored. Much effort is put into the material aspects of the electrode implant to increase charge injection capacity, suppress foreign body response and build micro sized electrode arrays allowing close contact with neurons. Conducting polymers, in particular poly(3,4-ethylene dioxythiophene) (PEDOT), have been suggested as materials highly interesting for such neural communication electrodes. The possibility to tailor the material both mechanically and biochemically to suit specific applications, is a substantial benefit with polymers when compared to metals. PEDOT also have hybrid charge transfer properties, including both electronic and ionic conduction, which allow for highly efficient charge injection.   Part of this thesis describes a method of tailoring PEDOT through exchanging the counter ion used in electropolymerisation process. Commonly used surfactants can thereby be excluded and instead, different biomolecules can be incorporated into the polymer. The electrochemical characteristics of the polymer film depend on the ion. PEDOT electropolymerised with heparin was here determined to have the most advantageous properties. In vitro methods were applied to confirm non-cytotoxicity of the formed PEDOT:biomolecular composites. In addition, biocompatibility was affirmed for PEDOT:heparin by evaluation of inflammatory response and neuron density when implanted in rodent cortex.   One advantage with PEDOT often stated, is its high stability compared to other conducting polymers. A battery of tests simulating the biological environment was therefore applied to investigate this stability, and especially the influence of the incorporated heparin. These tests showed that there was a decline in the electroactivity of PEDOT over time. This also applied in phosphate buffered saline at body temperature and in the absence of other stressors. The time course of degradation also differed depending on whether the counter ion was the surfactant polystyrene sulphonate or heparin, with a slightly better stability for the former.   One possibility with PEDOT, often overlooked for biological applications, is the use of its semi conducting properties in order to include logic functions in the implant. This thesis presents the concept of using PEDOT electrochemical transistors to construct textile electrode arrays with in-built multiplexing. Using the electrolyte mediated interaction between adjacent PEDOT coated fibres to switch the polymer coat between conducting and non conducting states, then transistor function can be included in the conducting textile. Analogue circuit simulations based on experimentally found transistor characteristics proved the feasibility of these textile arrays. Developments of better polymer coatings, electrolytes and encapsulation techniques for this technology, were also identified to be essential steps in order to make these devices truly useful.   In summary, this work shows the potential of PEDOT to improve neural interfaces in several ways. Some weaknesses of the polymer and the polymer electronics are presented and this, together with the epidemiological data, should point in the direction for future studies within this field.
  •  
4.
  • Asplund, Maria, et al. (författare)
  • Electroactive polymers for neural interfaces
  • 2010
  • Ingår i: Polymer chemistry. - : Royal Society of Chemistry (RSC). - 1759-9954 .- 1759-9962. ; 1:9, s. 1374-1391
  • Forskningsöversikt (refereegranskat)abstract
    • Development of electroactive conjugated polymers, for the purpose of recording and eliciting signals in the neural systems in humans, can be used to fashion the interfaces between the two signalling systems of electronics and neural systems. The design of desirable chemical, mechanical and electrical properties in the electroactive polymer electrodes, and the means of integration of these into biological systems, are here reviewed.
  •  
5.
  •  
6.
  • Asplund, Maria, 1978-, et al. (författare)
  • Wire electronics and woven logic, as a potential technology for neuroelectronic implants
  • Annan publikation (populärvet., debatt m.m.)abstract
    • New strategies to improve neuron coupling to neuroelectronic implants are needed. In particular, to maintain functional coupling between implant and neurons, foreign body response like encapsulation must me minimized. Apart from modifying materials to mitigate encapsulation it has been shown that with extremely thin structures, encapsulation will be less pronounced. We here utilize wire electrochemical transistors (WECTs) using conducting polymer coated fibers. Monofilaments down to 10 μm can be successfully coated and weaved into complex networks with built in logic functions, so called textile logic. Such systems can control signal patterns at a large number of electrode terminals from a few addressing fibres. Not only is fibre size in the range where less encapsulation is expected but textiles are known to make successful implants because of their soft and flexible mechanical properties. Further, textile fabrication provides versatility and even three dimensional networks are possible. Three possible architectures for neuroelectronic systems are discussed. WECTs are sensitive to dehydration and materials for better durability or improved encapsulation is needed for stable performance in biological environments.
  •  
7.
  • Bergqvist, Jonas, et al. (författare)
  • New method for lateral mapping of bimolecular recombination in thin-film organic solar cells
  • 2016
  • Ingår i: Progress in Photovoltaics. - : John Wiley & Sons. - 1062-7995 .- 1099-159X. ; 24:8, s. 1096-1108
  • Tidskriftsartikel (refereegranskat)abstract
    • The best organic solar cells are limited by bimolecular recombination. Tools to study these losses are available; however, they are only developed for small area (laboratory-scale) devices and are not yet available for large area (production-scale) devices. Here we introduce the Intermodulation Light Beam-Induced Current (IMLBIC) technique, which allows simultaneous spatial mapping of both the amount of extracted photocurrent and the bimolecular recombination over the active area of a solar cell. We utilize the second-order non-linear dependence on the illumination intensity as a signature for bimolecular recombination. Using two lasers modulated with different frequencies, we record the photocurrent response at each modulation frequency and the bimolecular recombination in the second-order intermodulation response at the sum and difference of the two frequencies. Drift-diffusion simulations predict a unique response for different recombination mechanisms. We successfully verify our approach by studying solar cells known to have mainly bimolecular recombination and thus propose this method as a viable tool for lateral detection and characterization of the dominant recombination mechanisms in organic solar cells. We expect that IMLBIC will be an important future tool for characterization and detection of recombination losses in large area organic solar cells.
  •  
8.
  • Bian, Qingzhen, 1988-, et al. (författare)
  • Vibronic coherence contributes to photocurrent generation in organic semiconductor heterojunction diodes
  • 2020
  • Ingår i: Nature Communications. - : NATURE PUBLISHING GROUP. - 2041-1723. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Charge separation dynamics after the absorption of a photon is a fundamental process relevant both for photosynthetic reaction centers and artificial solar conversion devices. It has been proposed that quantum coherence plays a role in the formation of charge carriers in organic photovoltaics, but experimental proofs have been lacking. Here we report experimental evidence of coherence in the charge separation process in organic donor/acceptor heterojunctions, in the form of low frequency oscillatory signature in the kinetics of the transient absorption and nonlinear two-dimensional photocurrent spectroscopy. The coherence plays a decisive role in the initial 200 femtoseconds as we observe distinct experimental signatures of coherent photocurrent generation. This coherent process breaks the energy barrier limitation for charge formation, thus competing with excitation energy transfer. The physics may inspire the design of new photovoltaic materials with high device performance, which explore the quantum effects in the next-generation optoelectronic applications.
  •  
9.
  • Björk, Per, et al. (författare)
  • Biomolecular nanowires decorated by organic electronic polymers
  • 2010
  • Ingår i: JOURNAL OF MATERIALS CHEMISTRY. - : Royal Society of Chemistry (RSC). - 0959-9428 .- 1364-5501. ; 20:12, s. 2269-2276
  • Tidskriftsartikel (refereegranskat)abstract
    • We demonstrate the shaping and forming of organic electronic polymers into designer nanostructures using biomacromolecules. In order to create nanowires, nanohelixes and assemblies of these, we coordinate semiconducting or metallic polymers to biomolecular polymers in the form of DNA and misfolded proteins. Optoelectronic and electrochemical devices utilizing these shaped materials are discussed.
  •  
10.
  • Borgani, Riccardo, et al. (författare)
  • Intermodulation electrostatic force microscopy for imaging surface photo-voltage
  • 2014
  • Ingår i: Applied Physics Letters. - : AIP Publishing. - 0003-6951 .- 1077-3118. ; 105:14, s. 143113-
  • Tidskriftsartikel (refereegranskat)abstract
    • We demonstrate an alternative to Kelvin Probe Force Microscopy for imaging surface potential. The open-loop, single-pass technique applies a low-frequency AC voltage to the atomic force microscopy tip while driving the cantilever near its resonance frequency. Frequency mixing due to the nonlinear capacitance gives intermodulation products of the two drive frequencies near the cantilever resonance, where they are measured with high signal to noise ratio. Analysis of this intermodulation response allows for quantitative reconstruction of the contact potential difference. We derive the theory of the method, validate it with numerical simulation and a control experiment, and we demonstrate its utility for fast imaging of the surface photo-voltage on an organic photovoltaic material.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 27
Typ av publikation
tidskriftsartikel (18)
konferensbidrag (4)
annan publikation (3)
doktorsavhandling (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (22)
populärvet., debatt m.m. (3)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Inganäs, Olle (25)
Hamedi, Mahiar (13)
von Holst, Hans (8)
Asplund, Maria (5)
Forchheimer, Robert (4)
Asplund, Maria, 1978 ... (4)
visa fler...
Elfwing, Anders (3)
Muller, Christian (3)
Herland, Anna (3)
Thaning, Elin (3)
Nyberg, Tobias (3)
Bergqvist, Jonas (3)
Rising, Anna (2)
Johansson, Jan (2)
Inganäs, Olle, 1951- (2)
Haviland, David B. (2)
Marcilla, Rebeca (2)
Forchheimer, Daniel (2)
Borgani, Riccardo (2)
Askarieh, Glareh (2)
Fahlman, Mats (1)
Berggren, Magnus (1)
Musumeci, Chiara (1)
Liu, Xianjie (1)
Crispin, Xavier (1)
Lundberg, Johan (1)
Yartsev, Arkady (1)
Melianas, Armantas (1)
Björk, Per (1)
Linares, Mathieu (1)
Buyanova, Irina A, 1 ... (1)
Tress, Wolfgang (1)
Widengren, Jerker (1)
Wigenius, Jens, 1975 (1)
Tang, Zheng (1)
Konradsson, Peter (1)
Åslund, Andreas (1)
Sandberg-Nordqvist, ... (1)
Kostyszyn, Beata (1)
von Holst, Hans, pro ... (1)
Stieglitz, Thomas, p ... (1)
Widengren, Jerker, 1 ... (1)
Bian, Qingzhen, 1988 ... (1)
Ma, Fei (1)
Chen, Shula, 1986- (1)
Wei, Qi (1)
Su, Xiaojun (1)
Chen, Weimin, 1959- (1)
Ponseca, Carlito S., ... (1)
Karki, Khadga J. (1)
visa färre...
Lärosäte
Linköpings universitet (19)
Karolinska Institutet (4)
Sveriges Lantbruksuniversitet (3)
Lunds universitet (1)
Språk
Engelska (27)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (18)
Teknik (10)
Medicin och hälsovetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy