SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Inganäs Olle) ;pers:(Elfwing Anders)"

Sökning: WFRF:(Inganäs Olle) > Elfwing Anders

  • Resultat 1-10 av 20
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Admassie, Shimelis, et al. (författare)
  • A renewable biopolymer cathode with multivalent metal ions for enhanced charge storage
  • 2014
  • Ingår i: JOURNAL OF MATERIALS CHEMISTRY A. - : Royal Society of Chemistry. - 2050-7488. ; 2:6, s. 1974-1979
  • Tidskriftsartikel (refereegranskat)abstract
    • A ternary composite supercapacitor electrode consisting of phosphomolybdic acid (HMA), a renewable biopolymer, lignin, and polypyrrole was synthesized by a simple one-step simultaneous electrochemical deposition and characterized by electrochemical methods. It was found that the addition of HMA increased the specific capacitance of the polypyrrole-lignin composite from 477 to 682 F g(-1) ( at a discharge current of 1 A g(-1)) and also significantly improved the charge storage capacity from 6(to 128 mA h g(-1).
  •  
2.
  • Admassie, Shimelis, et al. (författare)
  • Biopolymer hybrid electrodes for scalable electricity storage
  • 2016
  • Ingår i: Materials Horizons. - : ROYAL SOC CHEMISTRY. - 2051-6347 .- 2051-6355. ; 3:3, s. 174-185
  • Forskningsöversikt (refereegranskat)abstract
    • Powering the future, while maintaining a cleaner environment and a strong socioeconomic growth, is going to be one of the biggest challenges faced by mankind in the 21st century. The first step in overcoming the challenge for a sustainable future is to use energy more efficiently so that the demand for fossil fuels can be reduced drastically. The second step is a transition from the use of fossil fuels to renewable energy sources. In this sense, organic electrode materials are becoming increasingly attractive compared to inorganic electrode materials which have reached a plateau regarding performance and have severe drawbacks in terms of cost, safety and environmental friendliness. Using organic composites based on conducting polymers, such as polypyrrole, and abundant, cheap and naturally occurring biopolymers rich in quinones, such as lignin, has recently emerged as an interesting alternative. These materials, which exhibit electronic and ionic conductivity, provide challenging opportunities in the development of new charge storage materials. This review presents an overview of recent developments in organic biopolymer composite electrodes as renewable electroactive materials towards sustainable, cheap and scalable energy storage devices.
  •  
3.
  • Ajjan, Fátima, et al. (författare)
  • High performance PEDOT/lignin biopolymer composites for electrochemical supercapacitors
  • 2016
  • Ingår i: Journal of Materials Chemistry A. - : ROYAL SOC CHEMISTRY. - 2050-7488 .- 2050-7496. ; 4:5, s. 1838-1847
  • Tidskriftsartikel (refereegranskat)abstract
    • Developing sustainable organic electrode materials for energy storage applications is an urgent task. We present a promising candidate based on the use of lignin, the second most abundant biopolymer in nature. This polymer is combined with a conducting polymer, where lignin as a polyanion can behave both as a dopant and surfactant. The synthesis of PEDOT/Lig biocomposites by both oxidative chemical and electrochemical polymerization of EDOT in the presence of lignin sulfonate is presented. The characterization of PEDOT/Lig was performed by UV-Vis-NIR spectroscopy, FTIR infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, cyclic voltammetry and galvanostatic charge-discharge. PEDOT doped with lignin doubles the specific capacitance (170.4 F g(-1)) compared to reference PEDOT electrodes (80.4 F g(-1)). The enhanced energy storage performance is a consequence of the additional pseudocapacitance generated by the quinone moieties in lignin, which give rise to faradaic reactions. Furthermore PEDOT/Lig is a highly stable biocomposite, retaining about 83% of its electroactivity after 1000 charge/discharge cycles. These results illustrate that the redox doping strategy is a facile and straightforward approach to improve the electroactive performance of PEDOT.
  •  
4.
  • Bäcklund, Fredrik, et al. (författare)
  • Conducting microhelices from self-assembly of protein fibrils
  • 2017
  • Ingår i: Soft Matter. - : Royal Society of Chemistry. - 1744-683X .- 1744-6848. ; 13:25, s. 4412-4417
  • Tidskriftsartikel (refereegranskat)abstract
    • Herein we utilize insulin to prepare amyloid based chiral heliceswith either right or left handed helicity. We demonstrate that thehelices can be utilized as structural templates for the conductingpolymer alkoxysulfonate poly(ethylenedioxythiophene) (PEDOT-S).The chirality of the helical assembly is transferred to PEDOT-S asdemonstrated by polarized optical microscopy (POM) and CircularDichroism (CD). Analysis of the helices by conductive atomic force(c-AFM) shows significant conductivity. In addition the morphologyof the template structure is stabilized by PEDOT-S. Theseconductive helical structures represent promising candidates in ourquest for THz resonators.
  •  
5.
  • Bäcklund, Fredrik, et al. (författare)
  • PEDOT-S coated protein fibril microhelices
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • We show here the preparation and characterization of micrometer sized conductive helices. We utilize protein fibrils as structural templates to create chiral helices with either right or left handed helicity. The helices are coated with the conductive polymer alkoxysulfonate poly(ethylenedioxythiophene) (PEDOT-S) to create micrometer sized conductive helices. The coating acts as a stabilizer for the template structure, facilitates the preparation of solid state films and shows significant conductivity. The helices have been investigated using Circular Dichroism (CD) and scanning electron microscopy (SEM) and the conductivity have been measured for solid state films.
  •  
6.
  • Elfwing, Anders, et al. (författare)
  • Conducting Helical Structures from Celery Decorated with a Metallic Conjugated Polymer Give Resonances in the Terahertz Range
  • 2018
  • Ingår i: Advanced Functional Materials. - : WILEY-V C H VERLAG GMBH. - 1616-301X .- 1616-3028. ; 28:24
  • Tidskriftsartikel (refereegranskat)abstract
    • A method to decorate cellulose-based helices retrieved from the plant celery with a conductive polymer is proposed. Using a layer-by-layer method, the decoration of the polyanionic conducting polymer poly(4-(2,3-dihydrothieno [3,4-b]-[1,4]dioxin-2-yl-methoxy)-1-butanesulfonic acid (PEDOT-S) is enhanced after coating the negatively charged cellulose helix with a polycationic polyethyleneimine. Microscopy techniques and two-point probe are used to image the structure and measure the conductivity of the helix. Analysis of the optical and electrical properties of the coated helix in the terahertz (THz) frequency range shows a resonance close to 1 THz and a broad shoulder that extends to 3.5 THz, consistent with electromagnetic models. Moreover, as helical antennas, it is shown that both axial and normal modes are present, which are correlated to the orientation and antenna electrical lengths of the coated helices. This work opens the possibility of designing tunable terahertz antennas through simple control of their dimensions and orientation.
  •  
7.
  • Elfwing, Anders, et al. (författare)
  • DNA Based Hybrid Material for Interface Engineering in Polymer Solar Cells
  • 2018
  • Ingår i: ACS Applied Materials and Interfaces. - : AMER CHEMICAL SOC. - 1944-8244 .- 1944-8252. ; 10:11, s. 9579-9586
  • Tidskriftsartikel (refereegranskat)abstract
    • A new solution processable electron transport material (ETM) is introduced for use in photovoltaic devices, which consists of a metallic conjugated polyelectrolyte, poly(4-(2,3-dihydrothieno[3,4-b]-[1,4]dioxin-2-yl-methoxy)-1-butanesulfonic acid (PEDOT-S), and surfactant-functionalized deoxyribonucleic acid (DNA) (named DNA:CTMA:PEDOT-S). This ETM is demonstrated to effectively work for bulk-heterojunction organic photovoltaic devices (OPV) based on different electron acceptor materials. The fill factor, the open circuit voltage, and the overall power conversion efficiency of the solar cells with a DNA:CTMA:PEDOT-S modified cathode are comparable to those of devices with a traditional lithium fluoride/aluminum cathode. The new electron transport layer has high optical transmittance, desired work function and selective electron transport. A dipole effect induced by the use of the surfactant cetyltrimethylammonium chloride (CTMA) is responsible for lowering the electrode work function. The DNA:CTMA complex works as an optical absorption dilutor, while PEDOT-S provides the conducting pathway for electron transport, and allows thicker layer to be used, enabling printing. This materials design opens a new pathway to harness and optimize the electronic and optical properties of printable interface materials.
  •  
8.
  • Elfwing, Anders, 1975- (författare)
  • On decoration of biomolecular scaffolds with a conjugated polyelectrolyte
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Biotemplating is the art of using a biological structure as a scaffold which is decorated with a functional material. In this fashion the structures will gain new functionalities and biotemplating offers a simple route of mass-producing mesoscopic material with new interesting properties. Biological structures are abundant and come in a great variety of elaborate and due to their natural origin they could be more suitable for interaction with biological systems than wholly synthetic materials. Conducting polymers are a novel class of material which was developed just 40 years ago and are well suited for interaction with biological material due to their organic composition. Furthermore the electronic properties of the conducting polymers can be tuned giving rise to dynamic control of the behavior of the material. Self-assembly processes are interesting since they do not require complicated or energy demanding processing conditions. This is particularly important as most biological materials are unstable at elevated temperatures or harsh environments. The main aim of this thesis is to show the possibility of using self-assembly to decorate a conducting polymer onto various biotemplates. Due to the intrinsic variety in charge, size and structure between the available natural scaffolds it is difficult, if not impossible, to find a universal method.In this thesis we show how biotemplating can be used to create new hybrid materials by self-assembling a conducting polymer with biological structures based on DNA, protein, lipids and cellulose, and in this fashion create material with novel optical and electronic properties.
  •  
9.
  • Elfwing, Anders, et al. (författare)
  • Protein nanowires with conductive properties
  • 2015
  • Ingår i: Journal of Materials Chemistry C. - : Royal Society of Chemistry. - 2050-7526 .- 2050-7534. ; 3:25, s. 6499-6504
  • Tidskriftsartikel (refereegranskat)abstract
    • Herein we report on the investigation of self-assembled protein nanofibrils functionalized with metallic organic compounds. We have characterized the electronic behaviour of individual nanowires using conductive atomic force microscopy. In order to follow the self assembly process we have incorporated fluorescent molecules into the protein and used the energy transfer between the internalized dye and the metallic coating to probe the binding of the polyelectrolyte to the fibril.
  •  
10.
  • Ever Aguirre, Luis, et al. (författare)
  • Diatom frustules protect DNA from ultraviolet light
  • 2018
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The evolutionary causes for generation of nano and microstructured silica by photosynthetic algae are not yet deciphered. Diatoms are single photosynthetic algal cells populating the oceans and waters around the globe. They generate a considerable fraction (20-30%) of all oxygen from photosynthesis, and 45% of total primary production of organic material in the sea. There are more than 100,000 species of diatoms, classified by the shape of the glass cage in which they live, and which they build during algal growth. These glass structures have accumulated for the last 100 million of years, and left rich deposits of nano/microstructured silicon oxide in the form of diatomaceous earth around the globe. Here we show that reflection of ultraviolet light by nanostructured silica can protect the deoxyribonucleic acid (DNA) in the algal cells, and that this may be an evolutionary cause for the formation of glass cages. © 2018 The Author(s).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 20
Typ av publikation
tidskriftsartikel (15)
konferensbidrag (2)
annan publikation (1)
doktorsavhandling (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (17)
övrigt vetenskapligt/konstnärligt (3)
Författare/redaktör
Inganäs, Olle (19)
Solin, Niclas (5)
Ouyang, Liangqi (4)
Musumeci, Chiara (3)
Ajjan, Fátima (3)
visa fler...
Tang, Zheng (3)
Hamedi, Mahiar (3)
Bäcklund, Fredrik (3)
Rising, Anna (2)
Johansson, Jan (2)
Admassie, Shimelis (2)
Bao, Qinye (2)
Forchheimer, Robert (2)
Rebis, Tomasz (2)
Muller, Christian (2)
Tu, Deyu (2)
Askarieh, Glareh (2)
Ponseca, Carlito (2)
Bergqvist, Jonas (2)
Hedhammar, My (2)
Karlsson, Roger (2)
Jansson, Ronnie (2)
Babenko, Viktoria (2)
Dzwolak, Wojciech (2)
Urbanowicz, Andrzej (2)
Krotkus, Arunas (2)
Liu, Xianjie (1)
Liin, Sara (1)
Jager, Edwin (1)
Wulff, Angela, 1963 (1)
Gabrielsson, Roger (1)
Melianas, Armantas (1)
Inganäs, Olle, 1951- (1)
Tress, Wolfgang (1)
Casado, N. (1)
Mecerreyes, D. (1)
Zeglio, Erica (1)
Ever Aguirre, Luis (1)
Elinder, Fredrik (1)
Suska, Anke, 1973- (1)
Johansson, Patrik (1)
Xia, Yuxin (1)
Cai, Wanzhu (1)
Skallberg, Andreas (1)
Ajjan, Fátima Nadia (1)
Farinola, Gianluca (1)
Elfwing, Anders, 197 ... (1)
Hedblom, Mikael, 198 ... (1)
Gabrielsson, Roger H (1)
visa färre...
Lärosäte
Linköpings universitet (19)
Kungliga Tekniska Högskolan (3)
Sveriges Lantbruksuniversitet (2)
Göteborgs universitet (1)
Chalmers tekniska högskola (1)
Karolinska Institutet (1)
Språk
Engelska (20)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (15)
Teknik (2)
Medicin och hälsovetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy