SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Inganäs Olle) ;pers:(Tvingstedt Kristofer 1976)"

Sökning: WFRF:(Inganäs Olle) > Tvingstedt Kristofer 1976

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Andersson, Viktor, et al. (författare)
  • Optical modeling of a folded organic solar cell
  • 2008
  • Ingår i: Journal of Applied Physics. - : AIP Publishing. - 0021-8979 .- 1089-7550. ; 103:9, s. 094520-
  • Tidskriftsartikel (refereegranskat)abstract
    • The optical behavior of a reflective tandem solar cell (V cell) is modeled by means of finite element method (FEM) simulations. The absorption of solar light in the active material as well as in both electrode layers is calculated. The FEM solves the electromagnetic wave equation on the entire defined geometry, resulting in the consideration of interference effects, as well as effects of refraction and reflection. Both single cells and tandem cells are modeled and confirmed to be in accordance with reflectance measurements. Energy dissipation in the active layers is studied as a function of layer thickness and folding angle, and the simulations clearly display the advantage of the light trapping feature of folded cells. This is especially prominent in cells with thinner active layers, where folding induces absorption in the active layer equivalent to that of much thicker cells.
  •  
3.
  •  
4.
  • Tvingstedt, Kristofer, 1976-, et al. (författare)
  • Folded reflective tandem polymer solar cell doubles efficiency
  • 2007
  • Ingår i: Applied Physics Letters. - : AIP Publishing. - 0003-6951 .- 1077-3118. ; 91:12, s. 123514-
  • Tidskriftsartikel (refereegranskat)abstract
    • Conjugated polymers are promising materials for the production of inexpensive and flexible photovoltaic cells. Organic materials display tunable optical absorption within a large spectral range. This enables the construction of organic tandem photovoltaic cells. The authors here demonstrate a reflective tandem cell where single cells are reflecting the nonabsorbed light upon another adjacent cell. By folding two planar but spectrally different cells toward each other, spectral broadening and light trapping are combined to give an enhancement of power conversion efficiency of a factor of 1.8±0.3.
  •  
5.
  • Tvingstedt, Kristofer, 1976-, et al. (författare)
  • Light Confinement in Thin Film Organic Photovoltaic cells
  • 2006
  • Ingår i: Photonics Europe, Strasbourg. - : SPIE.
  • Konferensbidrag (refereegranskat)abstract
    • Microstructuring of polymer surfaces on optical spacers allows formation of reflective light traps. Such flexible reflectors can be combined with flexible polymer solar cells. We have demonstrated enhanced absorption using Lambertian and regular light reflectors, demonstrated via luminescence from fluorescent layers. Such light traps are suitable to use in combination with polymer solar cells incorporating transparent electrodes. The possibility to enhance the concentration of excited states and photogenerated charges through light trapping also helps to increase charge carrier mobility. These experimental results indicate that light confinement may be an alternative approach for boosting the efficiency of thin film conjugated polymer photovoltaics.
  •  
6.
  • Tvingstedt, Kristofer, 1976- (författare)
  • Light Trapping and Alternative Electrodes for Organic Photovoltaic Devices
  • 2007
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Organic materials, such as conjugated polymers, have emerged as a promising alternative for the production of inexpensive and flexible photovoltaic cells. As conjugated polymers are soluble, liquid based printing techniques enable production on large scale to a price much lower than that for inorganic based solar cells. Present day state of the art conjugated polymer photovoltaic cells are comprised by blends of a semiconducting polymer and a soluble derivative of fullerene molecules. Such bulk heterojunction solar cells now show power conversion efficiencies of up to 4-6%. The quantum efficiency of thin film organic solar cells is however still limited by several processes, of which the most prominent limitations are the comparatively low mobility and the high level of charge recombination. Hence organic cells do not yet perform as well as their more expensive inorganic counterparts. In order to overcome this present drawback of conjugated polymer photovoltaics, efforts are continuously devoted to developing materials or devices with increased absorption or with better charge carrier transporting properties. The latter can be facilitated by increasing the mobility of the pure material or by introducing beneficial morphology to prevent carrier recombination. Minimizing the active layer film thickness is an alternative route to collect more of the generated free charge carriers. However, a minimum film thickness is always required for sufficient photon absorption.A further limitation for low cost large scale production has been the dependence on expensive transparent electrodes such as indium tin oxide. The development of cheaper electrodes compatible with fast processing is therefore of high importance.The primary aim of this work has been to increase the absorption in solar cells made from thin films of organic materials. Device construction, deploying new geometries, and evaluation of different methods to provide for light trapping and photon recycling have been strived for. Different routes to construct and incorporate light trapping structures that enable higher photon absorption in a thinner film are presented. By recycling the reflected photons and enhancing the optical path length within a thinner cell, the absorption rate, as well as the collection of more charge carriers, is provided for. Attempts have been performed by utilizing a range of different structures with feature sizes ranging from nanometers up to centimeters. Surface plasmons, Lambertian scatterers, micro lenses, tandem cells as well as larger folded cell structures have been evaluated. Naturally, some of these methods have turned out to be more successful than others. From this work it can nevertheless be concluded that proper light trapping, in thin films of organic materials for photovoltaic energy conversion, is a technique capable of improving the cell performance.In addition to the study of light trapping, two new alternative electrodes for polymer photovoltaic devices are suggested and evaluated.
  •  
7.
  •  
8.
  •  
9.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy