SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Inganäs Olle) ;pers:(Wang Ergang 1981)"

Sökning: WFRF:(Inganäs Olle) > Wang Ergang 1981

  • Resultat 1-10 av 33
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bergqvist, J., et al. (författare)
  • Sub-glass transition annealing enhances polymer solar cell performance
  • 2014
  • Ingår i: Journal of Materials Chemistry A. - 2050-7488 .- 2050-7496. ; 2:17, s. 6146-6152
  • Tidskriftsartikel (refereegranskat)abstract
    • Thermal annealing of non-crystalline polymer:fullerene blends typically results in a drastic decrease in solar cell performance. In particular aggressive annealing above the glass transition temperature results in a detrimental coarsening of the blend nanostructure. We demonstrate that mild annealing below the glass transition temperature is a viable avenue to control the nanostructure of a non-crystalline thiophene–quinoxaline copolymer:fullerene blend. Direct imaging methods indicate that coarsening of the blend nanostructure can be avoided. However, a combination of absorption and luminescence spectroscopy reveals that local changes in the polymer conformation as well as limited fullerene aggregation are permitted to occur. As a result, we are able to optimise the solar cell performance evenly across different positions of the coated area, which is a necessary criterion for large-scale, high throughput production.
  •  
2.
  • Bian, Qingzhen, et al. (författare)
  • Reduced Nonradiative Voltage Loss in Terpolymer Solar Cells
  • 2020
  • Ingår i: Journal of Physical Chemistry Letters. - : American Chemical Society (ACS). - 1948-7185. ; 11:10, s. 3796-3802
  • Tidskriftsartikel (refereegranskat)abstract
    • The dissociation of hybrid local exciton and charge transfer excitons (LE-CT) in efficient bulk-heterojunction nonfullerene solar cells contributes to reduced nonradiative photovoltage loss, a mechanism that still remains unclear. Herein we studied the energetic and entropic contribution in the hybrid LE-CT exciton dissociation in devices based on a conjugated terpolymer. Compared with reference devices based on ternary blends, the terpolymer devices demonstrated a significant reduction in the nonradiative photovoltage loss, regardless of the acceptor molecule, be it fullerene or nonfullerene. Fourier transform photocurrent spectroscopy revealed a significant LE-CT character in the terpolymer-based solar cells. Temperature-dependent hole mobility and photovoltage confirm that entropic and energetic effects contribute to the efficient LE-CT dissociation. The energetic disorder value measured in the fullerene- or nonfullerene-based terpolymer devices suggested that this entropic contribution came from the terpolymer, a signature of higher disorder in copolymers with multiple aromatic groups. This gives new insight into the fundamental physics of efficient LE-CT exciton dissociation with smaller nonradiative recombination loss.
  •  
3.
  • Cai, Tianqi, et al. (författare)
  • Low bandgap polymers synthesized by FeCl(3) oxidative polymerization
  • 2010
  • Ingår i: Solar Energy Materials and Solar Cells. - : Elsevier BV. - 0927-0248. ; 94:7, s. 1275-1281
  • Tidskriftsartikel (refereegranskat)abstract
    • Four low bandgap polymers, combining an alkyl thiophene donor with benzo[c][1,2,5]thiadiazole, 2,3-diphenylquinoxaline, 2,3-diphenylthieno[3,4-b]pyrazine and 6,7-diphenyl-[1,2,5]thiadiazolo[3,4-g] quinoxaline acceptors in a donor-acceptor-donor architecture, were synthesized via FeCl3 oxidative polymerization. The molecular weights of the polymers were improved by introducing o-dichlor-obenzene (ODCB) as the reaction solvent instead of the commonly used solvent, chloroform. The photophysical, electrochemical and photovoltaic properties of the resulting polymers were investigated and compared. The optical bandgaps of the polymers vary between 1.0 and 1.9 eV, which is promising for solar cells. The devices spin-coated from an ODCB solution of P1DB:[70]PCBM showed a power conversion efficiency of 1.08% with an open-circuit voltage of 0.91 V and a short-circuit current density of 3.36 mA cm(-2) under irradiation from an AM1.5G solar simulator (100 mW cm(-2)). (C) 2010 Elsevier B.V. All rights reserved.
  •  
4.
  • Campoy-Quiles, M., et al. (författare)
  • On the complex refractive index of polymer:fullerene photovoltaic blends
  • 2014
  • Ingår i: Thin Solid Films. - : Elsevier BV. - 0040-6090 .- 1879-2731. ; 571:P3, s. 371-376
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a detailed investigation of the refractive index of polymer:fullerene blends for photovoltaic applications. The donor polymers poly[2,7-(9,9-dioctylfluorene)-alt-5,5-(4,7-di-2-thienyl-2,1,3-benzothiadiazole)] (APFO3), poly[2,3-bis-(3-octyloxyphenyl)quinoxaline-5,8-diyl-alt-thiophene-2,5-diyl] (TQ1), and poly[2,7-(9,9-dioctylfluorene)-alt-5,5-(5,10-di-2-thienyl-2,3,7,8-tetraphenyl-pyrazino[2,3-g]quinoxaline)] (APFO-Green9) were blended with either [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) or [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM). We measured variable angle spectroscopic ellipsometry for three systems, namely APFO3:PCBM, TQ1:PC71BM and APFO-Green9:PC71BM, as a function of composition and analyze the data employing a number of models. We found that Bruggeman effective medium approximations (EMA) are not precise for the description of the optical properties of these blends. This is due to a number of reasons. First, we find that there are energy shifts associated to changes in conjugation length that cannot be accounted for using EMA. Second, blending results in a strong reduction of anisotropy. Finally, our data suggest that there is some degree of vertical segregation between components. Therefore, our results support the idea that the optical properties of polymer:fullerene mixtures should be treated as alloys rather than non-interacting blends.
  •  
5.
  • Fan, Qunping, 1989, et al. (författare)
  • Over 14% efficiency all-polymer solar cells enabled by a low bandgap polymer acceptor with low energy loss and efficient charge separation
  • 2020
  • Ingår i: Energy & Environmental Science. - : Royal Society of Chemistry. - 1754-5692 .- 1754-5706. ; 13:12, s. 5017-5027
  • Tidskriftsartikel (refereegranskat)abstract
    • Obtaining both high open-circuit voltage (V-oc) and short-circuit current density (J(sc)) has been a major challenge for efficient all-polymer solar cells (all-PSCs). Herein, we developed a polymer acceptor PF5-Y5 with excellent optical absorption capability (onset extending to similar to 880 nm and maximum absorption coefficient exceeding 105 cm(-1) in a film), high electron mobility (3.18 x 10(3) cm(2) V-1 s(-1)) and high LUMO level (-3.84 eV) to address such a challenge. As a result, the PBDB-T:PF5-Y5-based all-PSCs achieved a high power conversion efficiency of up to 14.45% with both a high Voc (0.946 V) and a high Jsc (20.65 mA cm(-2)), due to the high and broad absorption coverage, small energy loss (0.57 eV) and efficient charge separation and transport in the device, which are among the best values in the all-PSC field. In addition, the all-PSC shows a similar to 15% improvement in PCE compared to its counterpart small molecule acceptor (Y5)-based device. Our results suggest that PF5-Y5 is a very promising polymer acceptor candidate for applications in efficient all-PSCs.
  •  
6.
  • Harillo-Baños, Albert, et al. (författare)
  • High-Throughput Screening of Blade-Coated Polymer:Polymer Solar Cells: Solvent Determines Achievable Performance
  • 2022
  • Ingår i: ChemSusChem. - : Wiley. - 1864-5631 .- 1864-564X. ; 15:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Optimization of a new system for organic solar cells is a multiparametric analysis problem that requires substantial efforts in terms of time and resources. The strong microstructure-dependent performance of polymer:polymer cells makes them particularly difficult to optimize, or to translate previous knowledge from spin coating into more scalable techniques. In this work, the photovoltaic performance of blade-coated devices was studied based on the promising polymer:polymer system PBDB-T and PF5-Y5 as donor and acceptor, respectively. Using the recently developed high-throughput methodology, the system was optimized for multiple variables, including solvent system, active layer composition, ratio, and thickness, among others, by fabricating more than 500 devices with less than 24 mg of each component. As a result, the power conversion efficiency of the blade-coated devices varied from 0.08 to 6.43 % in the best device. The performed statistical analysis of the large experimental data obtained showed that solvent selection had the major impact on the final device performance due to its influence on the active layer microstructure. As a conclusion, the use of the plot of the device efficiency in the Hansen space was proposed as a powerful tool to guide solvent selection in organic photovoltaics.
  •  
7.
  • Henriksson, Patrik, 1983, et al. (författare)
  • Stability study of quinoxaline and pyrido pyrazine based co-polymers for solar cell applications
  • 2014
  • Ingår i: Solar Energy Materials and Solar Cells. - : Elsevier BV. - 0927-0248 .- 1879-3398. ; 130, s. 138-143
  • Tidskriftsartikel (refereegranskat)abstract
    • We present two co-polymer families; one based on a thiophene-quinoxaline unit and one on a thiophene-pyrido pyrazine unit. Co-polymerization of these monomers with thiophene-hexylthiophene was performed to create polymers with an optical absorption that fully covers the visible part of the solar spectrum with the aim to enhance the solar cell performances of these polymers. We have also studied how increasing the fraction of thiophene-hexylthiophene affects the photo-oxidative stability of these polymers. Thiophene-pyrido pyrazine solar cells displayed increased device efficiency upon addition of the thiophene-hexylthiophene and, in addition, the stability is retained upon inclusion of these units. In contrast, we found that for the thiophene-quinoxaline based co-polymer, both device efficiency and stability decreased with increasing thiophene-hexylthiophene fraction. Moreover, our results indicate that the photo-oxidative stability of the thiophene-quinoxaline co-polymer is independent of the polymer molecular weight as well as of the film thickness.
  •  
8.
  • Hou, Lintao, et al. (författare)
  • Lateral Phase Separation Gradients in Spin-Coated Thin Films of High-Performance Polymer: Fullerene Photovoltaic Blends
  • 2011
  • Ingår i: Advanced Functional Materials. - : Wiley. - 1616-3028 .- 1616-301X. ; 21:16, s. 3169-3175
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, it is demonstrated that a finer nanostructure produced under a rapid rate of solvent removal significantly improves charge separation in a high-performance polymer: fullerene bulk-heterojunction blend. During spin-coating, variations in solvent evaporation rate give rise to lateral phase separation gradients with the degree of coarseness decreasing away from the center of rotation. As a result, across spin-coated thin films the photocurrent at the first interference maximum varies as much as 25%, which is much larger than any optical effect. This is investigated by combining information on the surface morphology of the active layer imaged by atomic force microscopy, the 3D nanostructure imaged by electron tomography, film formation during the spin coating process imaged by optical interference and photocurrent generation distribution in devices imaged by a scanning light pulse technique. The observation that the nanostructure of organic photovoltaic blends can strongly vary across spin-coated thin films will aid the design of solvent mixtures suitable for high molecular-weight polymers and of coating techniques amenable to large area processing.
  •  
9.
  • Li, Wei, et al. (författare)
  • One-Step Synthesis of Precursor Oligomers for Organic Photovoltaics: A Comparative Study between Polymers and Small Molecules
  • 2015
  • Ingår i: ACS Applied Materials and Interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 7:49, s. 27106-27114
  • Tidskriftsartikel (refereegranskat)abstract
    • Two series of oligomers TQ and rhodanine end-capped TQ-DR were synthesized using a facile one-step method. Their optical, electrical, and thermal properties and photovoltaic performances were systematically investigated and compared. The TQ series of oligomers were found to be amorphous, whereas the TQ-DR series are semicrystalline. For the TQ oligomers, the results obtained in solar cells show that as the chain length of the oligomers increases, an increase in power conversion efficiency (PCE) is obtained. However, when introducing 3-ethylrhodanine into the TQ oligomers as end groups, the PCE of the TQ-DR series of oligomers decreases as the chain length increases. Moreover, the TQ-DR series of oligomers give much higher performances compared to the original amorphous TQ series of oligomers owing to the improved extinction coefficient (epsilon) and crystallinity afforded by the rhodanine. In particular, the highly crystalline oligomer TQ5-DR, which has the shortest conjugation length shows a high hole mobility of 0.034 cm(2) V-1 s(-1) and a high PCE of 3.14%, which is the highest efficiency out of all of the six oligomers. The structure-property correlations for all of the oligomers and the TQ1 polymer demonstrate that structural control of enhanced intermolecular interactions and crystallinity is a key for small molecules/oligomers to achieve high mobilities, which is an essential requirement for use in OPVs.
  •  
10.
  • Li, Zhaojun, 1989, et al. (författare)
  • High Performance All-Polymer Solar Cells by Synergistic Effects of Fine-Tuned Crystallinity and Solvent Annealing.
  • 2016
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 1520-5126 .- 0002-7863. ; 138:34, s. 10935-44
  • Tidskriftsartikel (refereegranskat)abstract
    • Growing interests have been devoted to the design of polymer acceptors as potential replacement for fullerene derivatives for high-performance all polymer solar cells (all-PSCs). One key factor that is limiting the efficiency of all-PSCs is the low fill factor (FF) (normally
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 33

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy