SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Persson Anders) ;pers:(Henriksson Lilian)"

Search: WFRF:(Persson Anders) > Henriksson Lilian

  • Result 1-10 of 16
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Bäck, Sophia, et al. (author)
  • Assessment of transmitral and left atrial appendage flow rate from cardiac 4D-CT
  • 2023
  • In: Communications Medicine. - : Springer Nature. - 2730-664X. ; 3:1
  • Journal article (peer-reviewed)abstract
    • Plain language summaryAssessing the blood flow inside the heart is important in diagnosis and treatment of various cardiovascular diseases, such as atrial fibrillation or heart failure. We developed a method to accurately track the motion of the heart walls over the course of a heartbeat in three-dimensional Computed Tomography (CT) images. Based on the motion, we calculated the amount of blood passing through the mitral valve and the left atrial appendage orifice, which are markers used in the diagnostic of heart failure and assessment of stroke risk in atrial fibrillation. The results agreed well with measurements from 4D flow MRI, an imaging technique that measures blood velocities. Our method could broaden the use of CT and make additional exams redundant. It can even be used to calculate the blood flow inside the heart. BackgroundCardiac time-resolved CT (4D-CT) acquisitions provide high quality anatomical images of the heart. However, some cardiac diseases require assessment of blood flow in the heart. Diastolic dysfunction, for instance, is diagnosed by measuring the flow through the mitral valve (MV), while in atrial fibrillation, the flow through the left atrial appendage (LAA) indicates the risk for thrombus formation. Accurate validated techniques to extract this information from 4D-CT have been lacking, however.MethodsTo measure the flow rate though the MV and the LAA from 4D-CT, we developed a motion tracking algorithm that performs a nonrigid deformation of the surface separating the blood pool from the myocardium. To improve the tracking of the LAA, this region was deformed separately from the left atrium and left ventricle. We compared the CT based flow with 4D flow and short axis MRI data from the same individual in 9 patients.ResultsFor the mitral valve flow, good agreement was found for the time span between the early and late diastolic peak flow (bias: <0.1 s). The ventricular stroke volume is similar compared to short-axis MRI (bias 3 ml). There are larger differences in the diastolic peak flow rates, with a larger bias for the early flow rate than the late flow rate. The peak LAA outflow rate measured with both modalities matches well (bias: -6 ml/s).ConclusionsOverall, the developed algorithm provides accurate tracking of dynamic cardiac geometries resulting in similar flow rates at the MV and LAA compared to 4D flow MRI. Back et al. describe a motion tracking algorithm to measure the flow rate through the mitral valve (MV) and the left atrial appendage (LAA) from 4D-CT data. The developed algorithm provided accurate tracking of dynamic cardiac geometries resulting in similar flow rates at the MV and LAA to those measured by 4D flow MRI.
  •  
2.
  • Bäck, Sophia, et al. (author)
  • Comprehensive left atrial flow component analysis reveals abnormal flow patterns in paroxysmal atrial fibrillation
  • 2024
  • In: American Journal of Physiology. Heart and Circulatory Physiology. - : AMER PHYSIOLOGICAL SOC. - 0363-6135 .- 1522-1539. ; 326:3, s. H511-H521
  • Journal article (peer-reviewed)abstract
    • Left atrial (LA) blood flow plays an important role in diseases such as atrial fibrillation (AF) and atrial cardiomyopathy since alterations in the blood flow might lead to thrombus formation and stroke. Using traditional techniques, such as echocardiography, atrial flow velocities can be measured at the pulmonary veins and the mitral valve, but a comprehensive understanding of the three-dimensional atrial flow field is missing. Previously, ventricular flow has been analyzed using flow component analysis, revealing new insights into ventricular flow and function. Thus, the aim of this project was to develop a comprehensive flow component analysis method for the LA and explore its utility in 21 patients with paroxysmal atrial fibrillation compared with a control group of 8 participants. The flow field was derived from time-resolved CT acquired during sinus rhythm using computational fluid dynamics. Flow components were computed from particle tracking. We identified six atrial flow components: conduit, reservoir, delayed ejection, retained inflow, residual volume, and pulmonary vein backflow. It was shown that conduit flow, defined as blood entering and leaving the LA within the same diastolic phase, exists in most subjects. Although the volume of conduit and reservoir is similar in patients with paroxysmal AF in sinus rhythm and controls, the volume of the other components is increased in paroxysmal AF. Comprehensive quantification of LA flow using flow component analysis makes atrial blood flow quantifiable, thus facilitating investigation of mechanisms underlying atrial dysfunction and can increase understanding of atrial blood flow in disease progression and stroke risk. NEW & NOTEWORTHY We developed a new comprehensive approach to atrial blood component analysis that includes both conduit flow and residual volume and compared the flow components of atrial fibrillation (AF) patients in sinus rhythm with controls. Conduit and reservoir flow were similar between the groups, whereas components with longer residence time in the left atrium were increased in the AF group. This could add to the pathophysiological understanding of atrial diseases and possibly clinical management.
  •  
3.
  •  
4.
  • Bäck, Sophia, et al. (author)
  • Elevated atrial blood stasis in paroxysmal atrial fibrillation during sinus rhythm: a patient-specific computational fluid dynamics study
  • 2023
  • In: Frontiers in Cardiovascular Medicine. - : FRONTIERS MEDIA SA. - 2297-055X. ; 10
  • Journal article (peer-reviewed)abstract
    • Introduction: Atrial fibrillation (AF) is associated with an increased risk of stroke, often caused by thrombi that form in the left atrium (LA), and especially in the left atrial appendage (LAA). The underlying mechanism is not fully understood but is thought to be related to stagnant blood flow, which might be present despite sinus rhythm. However, measuring blood flow and stasis in the LAA is challenging due to its small size and low velocities. We aimed to compare the blood flow and stasis in the left atrium of paroxysmal AF patients with controls using computational fluid dynamics (CFD) simulations.Methods : The CFD simulations were based on time-resolved computed tomography including the patient-specific cardiac motion. The pipeline allowed for analysis of 21 patients with paroxysmal AF and 8 controls. Stasis was estimated by computing the blood residence time.Results and Discussion: Residence time was elevated in the AF group (p < 0.001). Linear regression analysis revealed that stasis was strongest associated with LA ejection ratio (p < 0.001, R-2 = 0.68) and the ratio of LA volume and left ventricular stroke volume (p < 0.001, R-2 = 0.81). Stroke risk due to LA thrombi could already be elevated in AF patients during sinus rhythm. In the future, patient specific CFD simulations may add to the assessment of this risk and support diagnosis and treatment.
  •  
5.
  • Gupta, Vikas, et al. (author)
  • Automated three-dimensional tracking of the left ventricular myocardium in time-resolved and dose-modulated cardiac CT images using deformable image registration
  • 2018
  • In: Journal of Cardiovascular Computed Tomography. - : Elsevier. - 1934-5925. ; 12:2, s. 139-148
  • Journal article (peer-reviewed)abstract
    • Background Assessment of myocardial deformation from time-resolved cardiac computed tomography (4D CT) would augment the already available functional information from such an examination without incurring any additional costs. A deformable image registration (DIR) based approach is proposed to allow fast and automatic myocardial tracking in clinical 4D CT images.Methods Left ventricular myocardial tissue displacement through a cardiac cycle was tracked using a B-spline transformation based DIR. Gradient of such displacements allowed Lagrangian strain estimation with respect to end-diastole in clinical 4D CT data from ten subjects with suspected coronary artery disease. Dice similarity coefficient (DSC), point-to-curve error (PTC), and tracking error were used to assess the tracking accuracy. Wilcoxon signed rank test provided significance of tracking errors. Topology preservation was verified using Jacobian of the deformation. Reliability of estimated strains and torsion (normalized twist angle) was tested in subjects with normal function by comparing them with normal strain in the literature.Results Comparison with manual tracking showed high accuracy (DSC: 0.99± 0.05; PTC: 0.56mm± 0.47 mm) and resulted in determinant(Jacobian) > 0 for all subjects, indicating preservation of topology. Average radial (0.13 mm), angular (0.64) and longitudinal (0.10 mm) tracking errors for the entire cohort were not significant (p > 0.9). For patients with normal function, average strain [circumferential, radial, longitudinal] and peak torsion estimates were: [-23.5%, 31.1%, −17.2%] and 7.22°, respectively. These estimates were in conformity with the reported normal ranges in the existing literature.Conclusions Accurate wall deformation tracking and subsequent strain estimation are feasible with the proposed method using only routine time-resolved 3D cardiac CT.
  •  
6.
  • Henriksson, Lilian, et al. (author)
  • The transluminal attenuation gradient does not add diagnostic accuracy to coronary computed tomography
  • 2021
  • In: Acta Radiologica. - : Sage Publications. - 0284-1851 .- 1600-0455. ; , s. 867-874
  • Journal article (peer-reviewed)abstract
    • Background A method for improving the accuracy of coronary computed tomography angiography (CCTA) is highly sought after as it would help to avoid unnecessary invasive coronary angiographies. Measurement of the transluminal attenuation gradient (TAG) has been proposed as an alternative to other existing methods, i.e. CT perfusion and CT fractional flow reserve (FFR). Purpose To evaluate the incremental value of three types of TAG in high-pitch spiral CCTA with invasive FFR measurements as reference. Material and Methods TAG was measured using two semi-automatic methods and one manual method. A receiver operating characteristic (ROC) analysis was made to determine the usefulness of TAG alone as well as TAG combined with CCTA for detection of significant coronary artery stenoses defined by an invasive FFR value <= 0.80. Results A total of 51 coronary vessels in 37 patients were included in this retrospective study. Hemodynamically significant stenoses were found in 13 vessels according to FFR. The ROC analysis TAG alone resulted in areas under the curve (AUCs) of 0.530 and 0.520 for the semi-automatic TAG and 0.557 for the manual TAG. TAG and CCTA combined resulted in AUCs of 0.567, 0.562 for semi-automatic TAG, and 0.569 for the manual TAG. Conclusion The results from our study showed no incremental value of TAG measured in single heartbeat CCTA in determining the severity of coronary artery stenosis degrees.
  •  
7.
  • Lantz, Jonas, et al. (author)
  • Characterization of Cardiac Flow in Heart Disease Patients by CFD and 4D Flow MRI
  • 2017
  • In: Bulletin of the Amerian Physcial Society. - : American Physical Society.
  • Conference paper (peer-reviewed)abstract
    • In this study, cardiac blood flow was simulated using Computational Fluid Dynamics and compared to in vivo flow measurements by 4D Flow MRI. In total, nine patients with various heart diseases were studied. Geometry and heart wall motion for the simulations were obtained from clinical CT measurements, with 0.3x0.3x0.3 mm spatial resolution and 20 time frames covering one heartbeat. The CFD simulations included pulmonary veins, left atrium and ventricle, mitral and aortic valve, and ascending aorta. Mesh sizes were on the order of 6-16 million cells, depending on the size of the heart, in order to resolve both papillary muscles and trabeculae. The computed flow field agreed visually very well with 4D Flow MRI, with characteristic vortices and flow structures seen in both techniques. Regression analysis showed that peak flow rate as well as stroke volume had an excellent agreement for the two techniques. We demonstrated the feasibility, and more importantly, fidelity of cardiac flow simulations by comparing CFD results to in vivo measurements. Both qualitative and quantitative results agreed well with the 4D Flow MRI measurements. Also, the developed simulation methodology enables “what if” scenarios, such as optimization of valve replacement and other surgical procedures.
  •  
8.
  •  
9.
  • Lantz, Jonas, 1982-, et al. (author)
  • Impact of Pulmonary Venous Inflow on Cardiac Flow Simulations : Comparison with In Vivo 4D Flow MRI
  • 2019
  • In: Annals of Biomedical Engineering. - : Springer-Verlag New York. - 0090-6964 .- 1573-9686. ; 47:2, s. 413-424
  • Journal article (peer-reviewed)abstract
    • Blood flow simulations are making their way into the clinic, and much attention is given to estimation of fractional flow reserve in coronary arteries. Intracardiac blood flow simulations also show promising results, and here the flow field is expected to depend on the pulmonary venous (PV) flow rates. In the absence of in vivo measurements, the distribution of the flow from the individual PVs is often unknown and typically assumed. Here, we performed intracardiac blood flow simulations based on time-resolved computed tomography on three patients, and investigated the effect of the distribution of PV flow rate on the flow field in the left atrium and ventricle. A design-of-experiment approach was used, where PV flow rates were varied in a systematic manner. In total 20 different simulations were performed per patient, and compared to in vivo 4D flow MRI measurements. Results were quantified by kinetic energy, mitral valve velocity profiles and root-mean-square errors of velocity. While large differences in atrial flow were found for varying PV inflow distributions, the effect on ventricular flow was negligible, due to a regularizing effect by mitral valve. Equal flow rate through all PVs most closely resembled in vivo measurements and is recommended in the absence of a priori knowledge.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view