SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "LAR1:cth ;pers:(Johnsson Filip 1960)"

Sökning: LAR1:cth > Johnsson Filip 1960

  • Resultat 41-50 av 517
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
41.
  • Beiron, Johanna, 1992, et al. (författare)
  • Integration of CCS in Combined Heat and Power Plants in a City Energy System
  • 2022
  • Ingår i: Proceedings of the 16th Greenhouse Gas Control Technologies Conference (GHGT-16) 23-24 Oct 2022. - : Elsevier BV.
  • Konferensbidrag (refereegranskat)abstract
    • Carbon dioxide removal (CDR) is expected to play an important role in climate change mitigation. Bio-energy carbon capture and storage (BECCS) is a form of CDR discussed in the Swedish district heating sector where large-scale point sources of biogenic CO2 emissions are found. This work investigates the retrofit of CO2 capture processes to combined heat and power (CHP) plants in a city energy system context, to examine the impact on CHP plant energy output and city energy balances, and the cost-optimal way to integrate and operate the capture processes. An energy system optimization model is applied to a case study of the city Västerås, Sweden, with scenarios involving the retrofit to two existing CHP plants in the city of either a heat-driven (MEA) or electricity-driven (HPC) carbon capture process. The results show that it is possible to retrofit the CHP plants with either of these options without significantly impacting the district heating system operation or the marginal costs of electricity and district heating. The MEA process mainly causes a reduction in district heating output (up to 30% decrease on an annual basis), which can be partly offset with heat recovery from the capture unit, or increased utilization of the CHP plants (if possible). The electrified HPC process does not impact the CHP plant steam cycle, but implies increased import of electricity to the city (up to 44% increase) compared to a reference scenario.
  •  
42.
  • Beiron, Johanna, 1992, et al. (författare)
  • Progressing from first-of-a-kind to Nth-of-a-kind: Applying learning rates to carbon capture deployment in Sweden
  • 2024
  • Ingår i: International Journal of Greenhouse Gas Control. - 1750-5836. ; 137
  • Tidskriftsartikel (refereegranskat)abstract
    • The deployment of CO2 capture technologies presents opportunities to store fossil fuel emissions from industries and power generation (CCS) and to enable carbon utilization (CCU). However, the costs for early CCS projects are high, and this is a challenge in terms of their economic viability, requiring a strong climate policy with high carbon prices for implementation. This work details a techno-economic assessment of the cost of carbon capture based on a hybrid method and individual project approach, using first-of-a-kind contingency factors and learning rates to study the evolution of carbon capture costs as installed capacity increases over time. The work is based on a case study of 147 Swedish industrial and combined heat and power plants (total of 176 stacks). The results are presented as marginal abatement cost curves, with consideration of early mover CCS projects and learning rates. Deployment scenarios are also presented that take into account an expected increase in the CO2 price. The findings indicate that when accounting for first-of-a-kind contingencies (100 % and 200 % increases in Nth-of-a-kind costs), 90 and 17 projects, respectively, of the total 176 emission sources studied have specific CO2 costs of <300 €/t. However, high learning rates (12 %) can reduce the capture costs from first-of-a-kind to Nth-of-a-kind levels within some 30 project installations (100 % contingency). With lower learning rates (3 %), the first-of-a-kind costs are reduced by 10 %–20 %. With the expected increase in CO2 prices, a peak in carbon capture deployment is observed around Year 2035, at a carbon price of 200 €/t.
  •  
43.
  •  
44.
  • Berggren, Mårten, et al. (författare)
  • Biomass co-firing potentials for electricity generation in Poland—Matching supply and co-firing opportunities
  • 2008
  • Ingår i: Biomass and Bioenergy. - : Elsevier BV. - 1873-2909 .- 0961-9534. ; 32:9, s. 865-879
  • Tidskriftsartikel (refereegranskat)abstract
    • As part of the European Union (EU) accession treaty, Poland is obliged to increase the share of renewable electricity production to 7.5% by 2010 (from a present share of about 2% in 2002). Most of this increase is expected to be covered by biomass-based electricity generation. This paper investigates the potential for co-firing of biomass and coal in the Polish power-generation system. More specifically, this study focuses on matching potentials in biomass supply with opportunities for co-firing biomass in existing coal-fired power plants. Available estimates of biomass supply and information on the power plant infrastructure are used as input for modelling the co-firing potential for each of the 16 regions in Poland ("Voivodship"). The modelling also gives the additional cost of the electricity and the CO2-avoidance cost for the co-firing. The result shows a potential of electricity produced from biomass in co-firing of 1.6-4.6% (2.3-6.6 TWhe) of the total electricity production in 2010. Adding this potential to the existing production of about 2% electricity from renewable energy sources (RES-E) gives an overall contribution of RES-E in the range 3.6-6.6%. The additional cost for the implementation of co-firing is less than €20 per MWhe (the average electricity price in Poland in 2003 was €96 per MWhe) corresponding to a CO2-avoidance cost of less than €20 per tonne CO2. In summary it can be concluded that although co-firing can serve as a low-cost option for near-term increase of RES-E, there is still an additional 0.9-3.9% of other RES-E production required to be developed to reach the 2010 target of 7.5% RES-E. The results call for quick action with respect to implementation of co-firing, if Poland should have any chance to reach the RES-E target by 2010.
  •  
45.
  •  
46.
  •  
47.
  • Berndes, Göran, 1966, et al. (författare)
  • Strategies For 2nd Generation Biofuels In Eu - Co-firing to stimulate feedstock supply development and process integration to improve energy efficiency and economic competitiveness
  • 2010
  • Ingår i: Biomass and Bioenergy. - : Elsevier BV. - 1873-2909 .- 0961-9534. ; 34:2, s. 227-236
  • Tidskriftsartikel (refereegranskat)abstract
    • The present biofuel policies in the European Union primarily stimulate 1st generation biofuels that are produced based on conventional food crops. They may be a distraction fromlignocellulose based 2nd generation biofuels – and also from biomass use for heat and electricity – by keeping farmers’ attention and significant investments focusing on firstgeneration biofuels and the cultivation of conventional food crops as feedstocks. This article presents two strategies that can contribute to the development of 2nd generation biofuels based on lignocellulosic feedstocks. The integration of gasification-based biofuel plants in district heating systems is one option for increasing the energy efficiency and improving the economic competitiveness of such biofuels. Another option, biomass co-firing with coal,generates high-efficiency biomass electricity and reduces CO2 emissions by replacing coal. It also offers a near-term market for lignocellulosic biomass, which can stimulate development of supply systems for biomass also suitable as feedstock for 2nd generation biofuels. Regardless of the long-term priorities of biomass use for energy, the stimulation of lignocellulosic biomass production by development of near term and cost-effective markets isjudged to be a no-regrets strategy for Europe. Strategies that induce a relevant development and exploit existing energy infrastructures in order to reduce risk and reach lower costs, are proposed an attractive complement the present and prospective biofuel policies.
  •  
48.
  • Berntsson, Thore, 1947, et al. (författare)
  • Towards Sustainabel Oil Refinery - Pre-study for larger co-operation project
  • 2008
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • In this report, the Chalmers EnergiCentrum (CEC) presents the results of a pre-study commissioned by Preem relating to the effective production of future vehicle fuels.This pre-study was made up of three studies focusing on energy streamlining, the utilisation of waste heat and carbon-dioxide separation and biorefinement relating to the gasification and hydration of vegetable oils. One of the common starting points for these studies was the current situation at the Preem refineries in Göteborg and Lysekil from where the measurement data were obtained and analysed. The report summarises the knowledge situation based on current research in the individual technical fields. The results present some interesting future opportunities for developing the sustainable production of future vehicle fuels. The sections vary, as the areas that have been examined differ and the sections have been written by different people. The reports ends with some joint conclusions and a number of questions which could be included and answered in a more extensive future main study, as part of a developed research partnership between Preem and the Chalmers University of Technology. The preliminary results of this work were analysed with the client at workshops on 1 October and 29 November 2007. The report is written in English combined with an extensive summary in Swedish including a proposal on a future main study. The study was conducted by the Chalmers EnergiCentrum (CEC), in collaboration with a number of researchers in the CEC’s network. They included Thore Berntsson, Jessica Algehed, Erik Hektor and Lennart Persson Elmeroth, all from Heat and Power Technology, Börje Gevert, Chemical and Biological Engineering, Tobias Richards, Forest Products and Chemical Engineering, Filip Johnsson and Anders Lyngfelt, Energy Technology, and Per-Åke Franck and Anders Åsblad, CIT Industriell Energianalys AB. The client, Preem, was represented by Bengt Ahlén, Sören Eriksson, Johan Jervehed, Bertil Karlsson, Gunnar Olsson, Ulf Kuylenstierna, Stefan Nyström, Martin Sjöberg and Thomas Ögren. Tobias Richards was responsible for compiling the report and Bertil Pettersson was the project manager.
  •  
49.
  • Bertilsson, Joel, 1991, et al. (författare)
  • Impact of Energy-Related Properties of Cities on Optimal Urban Energy System Design
  • 2024
  • Ingår i: Energies. - 1996-1073 .- 1996-1073. ; 17:15
  • Tidskriftsartikel (refereegranskat)abstract
    • This study investigates how differences in energy-related properties of cities influence the composition of a cost-efficient urban energy system, assuming electrification of the transport and industry sectors and zero-emission of CO2. These differences are evaluated for two scenarios regarding the capacities of the modeled cities to import electricity. A linear optimization model that encompasses the electricity, heating, industry, and transport sectors, using measured data from six cities in Sweden, is applied. Results show that when strict constraints on electricity imports are enforced, cities with a lower ratio of annual electricity demand for heat encourage the implementation of power-to-heat solutions in the heating sector. This study also reveals that under such stringent electricity import conditions, cities with a high level of flexibility in electricity demand favor a combination of batteries and solar photovoltaics as opposed to biomass-based electricity production. Conversely, when electricity importation is less restricted and biomass prices surpass 20 EUR/MWh, local electricity generation is outcompeted by imports, and large-scale heat pumps working in tandem with thermal energy storage dominate the heating sector in all modeled cities. This assertion holds true when the maximum electricity import capacity is utilized up to 5000 h annually.
  •  
50.
  • Biermann, Max, 1989, et al. (författare)
  • Capture of CO2 from Steam Reformer Flue Gases Using Monoethanolamine: Pilot Plant Validation and Process Design for Partial Capture
  • 2022
  • Ingår i: Industrial & Engineering Chemistry Research. - : American Chemical Society (ACS). - 1520-5045 .- 0888-5885. ; 61
  • Tidskriftsartikel (refereegranskat)abstract
    • Carbon dioxide (CO2) capture from a slipstream of steam reformer flue gas (18–20 vol %wet CO2) using 30 wt % aqueous monoethanolamine was performed for ∼500 h in a mobile test unit (∼120 kg CO2/h). Specific reboiler duties (SRDs) of 3.6–3.8 MJ/kg CO2 were achieved at 90% capture. The pilot data validate the modeling of off-design partial capture, that is, operation at lower CO2 capture rates (at constant gas flow) than the absorption column was designed to achieve. This paper demonstrates that off-design partial capture enables significant energy savings (SRD, cooling) relative to on-design capture. The accrued savings depend on the column design (packing height, flooding approach) and the feed CO2 concentration. Finally, a concept for stepwise deployment of carbon capture and storage in industries with high-CO2 concentration sources (e.g., steel and cement manufacturing and refining) is introduced. Thanks to its inherent full-capture-ready design, the initial energy-efficient, off-design partial capture operation can be extended to full capture over time.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 41-50 av 517
Typ av publikation
tidskriftsartikel (268)
konferensbidrag (200)
bokkapitel (25)
rapport (17)
forskningsöversikt (4)
samlingsverk (redaktörskap) (2)
visa fler...
doktorsavhandling (1)
visa färre...
Typ av innehåll
refereegranskat (402)
övrigt vetenskapligt/konstnärligt (112)
populärvet., debatt m.m. (3)
Författare/redaktör
Leckner, Bo G, 1936 (91)
Normann, Fredrik, 19 ... (90)
Pallarès, David, 197 ... (87)
Andersson, Klas, 197 ... (74)
Odenberger, Mikael, ... (63)
visa fler...
Göransson, Lisa, 198 ... (45)
Kjärstad, Jan, 1956 (36)
Mata Las Heras, Erik ... (25)
Thunman, Henrik, 197 ... (22)
Rootzén, Johan, 1978 (22)
Sasic, Srdjan, 1968 (18)
Taljegård, Maria, 19 ... (18)
Mocholí Montañés, Ru ... (18)
Martinez Castilla, G ... (16)
Sette, Erik, 1984 (15)
Sasic Kalagasidis, A ... (14)
Beiron, Johanna, 199 ... (14)
Òsk Gardarsdòttir, S ... (13)
Johansson, Robert, 1 ... (13)
Biermann, Max, 1989 (13)
Berndes, Göran, 1966 (12)
Köhler, Anna, 1989 (12)
Guio Perez, Diana Ca ... (11)
Fleig, Daniel, 1980 (11)
Sternéus, Johan, 197 ... (11)
Nyholm, Emil, 1984 (10)
Ó Broin, Eoin, 1973 (10)
Jilvero, Henrik, 198 ... (9)
Toktarova, Alla, 199 ... (9)
Goop, Joel, 1986 (9)
Almstedt, Alf-Erik, ... (8)
Eldrup, N.H. (8)
Reichenberg, Lina, 1 ... (8)
Djerf, Tove, 1989 (8)
Schouten, J.C., (8)
Karlsson, Ida, 1980 (8)
Niklasson, Fredrik, ... (8)
Lyngfelt, Anders, 19 ... (7)
Seddighi, Sadegh, 19 ... (7)
Skagestad, R. (7)
Hjärtstam, Stefan, 1 ... (7)
Kuehnemuth, Daniel, ... (7)
Ajdari, Sima, 1985 (6)
Farzaneh, Meisam, 19 ... (6)
Heinisch, Verena, 19 ... (6)
Ullmark, Jonathan, 1 ... (6)
Werther, J. (6)
Zhang, Wennan, 1962 (6)
Romanchenko, Dmytro, ... (6)
visa färre...
Lärosäte
Chalmers tekniska högskola (517)
Göteborgs universitet (9)
Kungliga Tekniska Högskolan (7)
RISE (4)
Mittuniversitetet (2)
Högskolan i Borås (2)
visa fler...
IVL Svenska Miljöinstitutet (2)
Uppsala universitet (1)
Luleå tekniska universitet (1)
Linnéuniversitetet (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (506)
Svenska (10)
Tyska (1)
Forskningsämne (UKÄ/SCB)
Teknik (489)
Naturvetenskap (65)
Samhällsvetenskap (32)
Lantbruksvetenskap (8)
Medicin och hälsovetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy