SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Brohede Samuel 1977 ) ;mspu:(article);lar1:(cth)"

Sökning: WFRF:(Brohede Samuel 1977 ) > Tidskriftsartikel > Chalmers tekniska högskola

  • Resultat 11-20 av 23
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
11.
  •  
12.
  • Haley, C. S., et al. (författare)
  • Retrievals of stratospheric O3 and NO2 profiles from Odin Optical Spectrograph and InfraRed Imager System (OSIRIS) limb-scattered sunlight measurements
  • 2004
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 109:D16
  • Tidskriftsartikel (refereegranskat)abstract
    • Scientific studies of the major environmental questions of global warming and ozone depletion require global data sets of atmospheric constituents with relevant temporal and spatial resolution. In this paper global number density profiles of O3 and NO2 are retrieved from Odin/OSIRIS limb-scattered sunlight measurements, using the Maximum A Posteriori estimator. Differential Optical Absorption Spectroscopy is applied to OSIRIS radiances as an intermediate step, using the wavelength windows 571-617 nm for O3 and 435-451 nm for NO2. The method is computationally efficient for processing OSIRIS data on an operational basis. Results show that a 2-3 km height resolution is generally achievable between about 12 km and 45 km for O3 with an estimated accuracy of 13\% at the peak and between about 15 km and 40 km for NO2 with an estimated accuracy of 10\% at the peak. First validations of the retrieved data indicate a good agreement both with other retrieval techniques applied to OSIRIS measurements and with the results of other instruments. Once the validation has reached a confident level, the retrieved data will be used to study important stratospheric processes relevant to global environmental problems. The unique NO2 data set will be of particular interest for studies of nitrogen chemistry in the middle atmosphere.
  •  
13.
  • Haley, C. S., et al. (författare)
  • Status of the Odin/OSIRIS stratospheric O3 and NO2 data products
  • 2007
  • Ingår i: Canadian Journal of Physics. - 0008-4204 .- 1208-6045. ; 85:11, s. 1177-1194
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper describes the status of the stratospheric ozone and nitrogen dioxide data products from the Optical Spectrograph and InfraRed Imager System (OSIRIS) instrument on the Odin satellite. The current version of the data products is 3.0, covering the period from November 2001 to the present. The O3 and NO2 retrieval methods are reviewed along with an overview of the error analyses and geophysical validation status.
  •  
14.
  • Jones, A., et al. (författare)
  • Technical Note: A trace gas climatology derived from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) data set
  • 2012
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 12:11, s. 5207-5220
  • Tidskriftsartikel (refereegranskat)abstract
    • The Atmospheric Chemistry Experiment-Fourier Transform Spectrometer (ACE-FTS) aboard the Canadian satellite SCISAT (launched in August 2003) was designed to investigate the composition of the upper troposphere, stratosphere, and mesosphere. ACE-FTS utilizes solar occultation to measure temperature and pressure as well as vertical profiles of over thirty chemical species including O-3, H2O, CH4, N2O, CO, NO, NO2, N2O5, HNO3, HCl, ClONO2, CCl3F, CCl2F2, and HF. Global coverage for each species is obtained approximately over a three month period and measurements are made with a vertical resolution of typically 3-4 km. A quality-controlled climatology has been created for each of these 14 baseline species, where individual profiles are averaged over the period of February 2004 to February 2009. Measurements used are from the ACE-FTS version 2.2 data set including updates for O-3 and N2O5. The climatological fields are provided on a monthly and three-monthly basis (DJF, MAM, JJA, SON) at 5 degree latitude and equivalent latitude spacing and on 28 pressure surfaces (26 of which are defined by the Stratospheric Processes And their Role in Climate (SPARC) Chemistry-Climate Model Validation Activity). The ACE-FTS climatological data set is available through the ACE website.
  •  
15.
  • Kerzenmacher, T., et al. (författare)
  • Validation of NO2 and NO from the Atmospheric Chemistry Experiment (ACE)
  • 2008
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 8:19, s. 5801--5841-
  • Tidskriftsartikel (refereegranskat)abstract
    • Vertical profiles of NO2 and NO have been obtained from solar occultation measurements by the Atmospheric Chemistry Experiment (ACE), using an infrared Fourier Transform Spectrometer (ACE-FTS) and (for NO2) an ultraviolet-visible-near-infrared spectrometer, MAESTRO (Measurement of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation). In this paper, the quality of the ACE-FTS version 2.2 NO2 and NO and the MAESTRO version 1.2 NO2 data are assessed using other solar occultation measurements (HALOE, SAGE II, SAGE III, POAM III, SCIAMACHY), stellar occultation measurements (GOMOS), limb measurements (MIPAS, OSIRIS), nadir measurements (SCIAMACHY), balloon-borne measurements (SPIRALE, SAOZ) and ground-based measurements (UV-VIS, FTIR). Time differences between the comparison measurements were reduced using either a tight coincidence criterion, or where possible, chemical box models. ACE-FTS NO2 and NO and the MAESTRO NO2 are generally consistent with the correlative data. The ACE-FTS and MAESTRO NO2 volume mixing ratio (VMR) profiles agree with the profiles from other satellite data sets to within about 20% between 25 and 40 km, with the exception of MIPAS ESA (for ACE-FTS) and SAGE II (for ACE-FTS (sunrise) and MAESTRO) and suggest a negative bias between 23 and 40 km of about 10%. MAESTRO reports larger VMR values than the ACE-FTS. In comparisons with HALOE, ACE-FTS NO VMRs typically (on average) agree to ±8% from 22 to 64 km and to +10% from 93 to 105 km, with maxima of 21% and 36%, respectively. Partial column comparisons for NO2 show that there is quite good agreement between the ACE instruments and the FTIRs, with a mean difference of +7.3% for ACE-FTS and +12.8% for MAESTRO.
  •  
16.
  • Llewellyn, E.J., et al. (författare)
  • The OSIRIS Instrument on the Odin Spacecraft
  • 2004
  • Ingår i: Canadian Journal of Physics. - 0008-4204 .- 1208-6045. ; 82:6, s. 411-422
  • Tidskriftsartikel (refereegranskat)abstract
    • The optical spectrograph and infrared imager system (OSIRIS) on board the Odin spacecraft is designed to retrieve altitude profiles of terrestrial atmospheric minor species by observing limb-radiance profiles. The grating optical spectrograph (OS) obtains spectra of scattered sunlight over the range 280-800 nm with a spectral resolution of approximately 1 nm. The Odin spacecraft performs a repetitive vertical limb scan to sweep the OS 1 km vertical field of view over selected altitude ranges from approximately 10 to 100 km. The terrestrial absorption features that are superimposed on the scattered solar spectrum are monitored to derive the minor species altitude profiles. The spectrograph also detects the airglow, which can be used to study the mesosphere and lower thermosphere. The other part of OSIRIS is a three-channel infrared imager (IRI) that uses linear array detectors to image the vertical limb radiance over an altitude range of approximately 100 km. The IRI observes both scattered sunlight and the airglow emissions from the oxygen infrared atmospheric band at 1.27 mum and the OH (3-1) Meinel band at 1.53 mum. A tomographic inversion technique is used with a series of these vertical images to derive the two-dimensional distribution of the emissions within the orbit plane.
  •  
17.
  • McLinden, C. A., et al. (författare)
  • OSIRIS: A Decade of Scattered Light
  • 2012
  • Ingår i: Bulletin of the American Meteorological Society. - 0003-0007 .- 1520-0477. ; 93:12, s. 1845-1863
  • Tidskriftsartikel (refereegranskat)abstract
    • Into year 11 of a 2-yr mission, OSIRIS is redefining how limb-scattered sunlight can be used to probe the atmosphere, even into the upper troposphere.
  •  
18.
  • Randall, C. E., et al. (författare)
  • Stratospheric effects of energetic particle precipitation in 2003-2004
  • 2005
  • Ingår i: Geophysical Research Letters. - 1944-8007 .- 0094-8276. ; 32:5, s. 1-4
  • Tidskriftsartikel (refereegranskat)abstract
    • Upper stratospheric enhancements in NOx (NO and NO2) were observed at high northern latitudes from March through at least July of 2004. Multi-satellite data analysis is used to examine the temporal evolution of the enhancements, to place them in historical context, and to investigate their origin. The enhancements were a factor of 4 higher than nominal at some locations, and are unprecedented in the northern hemisphere since at least 1985. They were accompanied by reductions in O-3 of more than 60% in some cases. The analysis suggests that energetic particle precipitation led to substantial NOx production in the upper atmosphere beginning with the remarkable solar storms in late October 2003 and possibly persisting through January. Downward transport of the excess NOx, facilitated by unique meteorological conditions in 2004 that led to an unusually strong upper stratospheric vortex from late January through March, caused the enhancements.
  •  
19.
  • Ricaud, P., et al. (författare)
  • Polar Vortex Evolution during the 2002 Antarctic Major Warming as Observed by the Odin Satellite
  • 2005
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 110:D5, s. 1-12
  • Tidskriftsartikel (refereegranskat)abstract
    • In September 2002 the Antarctic polar vortex split in two under the influence of a sudden warming. During this event, the Odin satellite was able to measure both ozone (O(3)) and chlorine monoxide (ClO), a key constituent responsible for the so-called "ozone hole'', together with nitrous oxide (N(2)O), a dynamical tracer, and nitric acid (HNO(3)) and nitrogen dioxide (NO(2)), tracers of denitrification. The submillimeter radiometer (SMR) microwave instrument and the Optical Spectrograph and Infrared Imager System (OSIRIS) UV-visible light spectrometer (VIS) and IR instrument on board Odin have sounded the polar vortex during three different periods: before (19-20 September), during (24-25 September), and after (1-2 and 4-5 October) the vortex split. Odin observations coupled with the Reactive Processes Ruling the Ozone Budget in the Stratosphere (REPROBUS) chemical transport model at and above 500 K isentropic surfaces (heights above 18 km) reveal that on 19-20 September the Antarctic vortex was dynamically stable and chemically nominal: denitrified, with a nearly complete chlorine activation, and a 70% O(3) loss at 500 K. On 25-26 September the unusual morphology of the vortex is monitored by the N(2)O observations. The measured ClO decay is consistent with other observations performed in 2002 and in the past. The vortex split episode is followed by a nearly complete deactivation of the ClO radicals on 1-2 October, leading to the end of the chemical O(3) loss, while HNO(3) and NO(2) fields start increasing. This acceleration of the chlorine deactivation results from the warming of the Antarctic vortex in 2002, putting an early end to the polar stratospheric cloud season. The model simulation suggests that the vortex elongation toward regions of strong solar irradiance also favored the rapid reformation of ClONO(2). The observed dynamical and chemical evolution of the 2002 polar vortex is qualitatively well reproduced by REPROBUS. Quantitative differences are mainly attributable to the too weak amounts of HNO(3) in the model, which do not produce enough NO(2) in presence of sunlight to deactivate chlorine as fast as observed by Odin.
  •  
20.
  • Sioris, C. E., et al. (författare)
  • Vertical profiles of lightning-produced NO2 enhancements in the upper troposphere observed by OSIRIS
  • 2007
  • Ingår i: Atmospheric Chemistry and Physics. - 1680-7316 .- 1680-7324. ; 7:16, s. 4281-4294
  • Tidskriftsartikel (refereegranskat)abstract
    • The purpose of this study is to perform a global search of the upper troposphere (z >= 10 km) for enhancements of nitrogen dioxide and determine their sources. This is the first application of satellite-based limb scattering to study upper tropospheric NO2. We have searched two years ( May 2003 - May 2005) of OSIRIS ( Optical Spectrograph and Infrared Imager System) operational NO2concentrations ( version 2.3/ 2.4) to find large enhancements in the observations by comparing with photochemical box model calculations and by identifying local maxima in NO2 volume mixing ratio. We find that lightning is the main production mechanism responsible for the large enhancements in OSIRIS NO2 observations as expected. Similar patterns in the abundances and spatial distribution of the NO2 enhancements are obtained by perturbing the lightning within the GEOS- Chem 3- dimensional chemical transport model. In most cases, the presence of lightning is confirmed with coincident imagery from LIS ( Lightning Imaging Sensor) and the spatial extent of the NO2 enhancement is mapped using nadir observations of tropospheric NO2 at high spatial resolution from SCIAMACHY ( Scanning Imaging Absorption Spectrometer for Atmospheric Chartography) and OMI ( Ozone Monitoring Instrument). The combination of the lightning and chemical sensors allows us to investigate globally the role of lightning to the abundance of NO2 in the upper troposphere ( UT). Lightning contributes 60% of the tropical upper tropospheric NO2 in GEOS- Chem simulations. The spatial and temporal distribution of NO2 enhancements from lightning ( Maylyzed.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 11-20 av 23

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy