SwePub
Sök i SwePub databas

  form:Ext_t

Träfflista för sökning "L773:1680 7316 "

form:Search_simp_t: L773:1680 7316

  • navigation:Result_t 1-10 navigation:of_t 579
hitlist:Modify_result_t
   
hitlist:Enumeration_thitlist:Reference_thitlist:Reference_picture_thitlist:Find_Mark_t
1.
  • Aas, W., et al. (creator_code:aut_t)
  • Lessons learnt from the first EMEP intensive measurement periods
  • 2012
  • record:In_t: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 12:17, s. 8073-8094
  • swepub:Mat_article_t (swepub:level_refereed_t)abstract
    • The first EMEP intensive measurement periods were held in June 2006 and January 2007. The measurements aimed to characterize the aerosol chemical compositions, including the gas/aerosol partitioning of inorganic compounds. The measurement program during these periods included daily or hourly measurements of the secondary inorganic components, with additional measurements of elemental- and organic carbon (EC and OC) and mineral dust in PM1, PM2.5 and PM10. These measurements have provided extended knowledge regarding the composition of particulate matter and the temporal and spatial variability of PM, as well as an extended database for the assessment of chemical transport models. This paper summarise the first experiences of making use of measurements from the first EMEP intensive measurement periods along with EMEP model results from the updated model version to characterise aerosol composition. We investigated how the PM chemical composition varies between the summer and the winter month and geographically. The observation and model data are in general agreement regarding the main features of PM10 and PM2.5 composition and the relative contribution of different components, though the EMEP model tends to give slightly lower estimates of PM10 and PM2.5 compared to measurements. The intensive measurement data has identified areas where improvements are needed. Hourly concurrent measurements of gaseous and particulate components for the first time facilitated testing of modelled diurnal variability of the gas/aerosol partitioning of nitrogen species. In general, the modelled diurnal cycles of nitrate and ammonium aerosols are in fair agreement with the measurements, but the diurnal variability of ammonia is not well captured. The largest differences between model and observations of aerosol mass are seen in Italy during winter, which to a large extent may be explained by an underestimation of residential wood burning sources. It should be noted that both primary and secondary OC has been included in the calculations for the first time, showing promising results. Mineral dust is important, especially in southern Europe, and the model seems to capture the dust episodes well. The lack of measurements of mineral dust hampers the possibility for model evaluation for this highly uncertain PM component. There are also lessons learnt regarding improved measurements for future intensive periods. There is a need for increased comparability between the measurements at different sites. For the nitrogen compounds it is clear that more measurements using artefact free methods based on continuous measurement methods and/or denuders are needed. For EC/OC, a reference methodology (both in field and laboratory) was lacking during these periods giving problems with comparability, though measurement protocols have recently been established and these should be followed by the Parties to the EMEP Protocol. For measurements with no defined protocols, it might be a good solution to use centralised laboratories to ensure comparability across the network. To cope with the introduction of these new measurements, new reporting guidelines have been developed to ensure that all proper information about the methodologies and data quality is given.
  •  
2.
  • Abbatt, J. P. D., et al. (creator_code:aut_t)
  • Halogen activation via interactions with environmental ice and snow in the polar lower troposphere and other regions
  • 2012
  • record:In_t: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 12:14, s. 6237-6271
  • swepub:Mat_article_t (swepub:level_refereed_t)abstract
    • The role of ice in the formation of chemically active halogens in the environment requires a full understanding because of its role in atmospheric chemistry, including controlling the regional atmospheric oxidizing capacity in specific situations. In particular, ice and snow are important for facilitating multiphase oxidative chemistry and as media upon which marine algae live. This paper reviews the nature of environmental ice substrates that participate in halogen chemistry, describes the reactions that occur on such substrates, presents the field evidence for ice-mediated halogen activation, summarizes our best understanding of ice-halogen activation mechanisms, and describes the current state of modeling these processes at different scales. Given the rapid pace of developments in the field, this paper largely addresses advances made in the past five years, with emphasis given to the polar boundary layer. The integrative nature of this field is highlighted in the presentation of work from the molecular to the regional scale, with a focus on understanding fundamental processes. This is essential for developing realistic parameterizations and descriptions of these processes for inclusion in larger scale models that are used to determine their regional and global impacts.
  •  
3.
  • Abdelkader, M., et al. (creator_code:aut_t)
  • Dust-air pollution dynamics over the eastern Mediterranean
  • 2015
  • record:In_t: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 15:16, s. 9173-9189
  • swepub:Mat_article_t (swepub:level_refereed_t)abstract
    • Interactions of desert dust and air pollution over the eastern Mediterranean (EM) have been studied, focusing on two distinct dust transport events on 22 and 28 September 2011. The atmospheric chemistry-climate model EMAC has been used at about 50 km grid spacing, applying an on-line dust emission scheme and calcium as a proxy for dust reactivity. EMAC includes a detailed tropospheric chemistry mechanism, aerosol microphysics and thermodynamics schemes to describe dust aging. The model is evaluated using ground-based observations for aerosol concentrations and aerosol optical depth (AOD) as well as satellite observations. Simulation results and back trajectory analysis show that the development of synoptic disturbances over the EM can enhance dust transport from the Sahara and Arabian deserts in frontal systems that also carry air pollution to the EM. The frontal systems are associated with precipitation that controls the dust removal. Our results show the importance of chemical aging of dust, which increases particle size, dust deposition and scavenging efficiency during transport, overall reducing the lifetime relative to non-aged dust particles. The relatively long travel periods of Saharan dust result in more sustained aging compared to Arabian dust. Sensitivity simulations indicate 3 times more dust deposition of aged relative to pristine dust, which significantly decreases the dust lifetime and loading.
  •  
4.
  • Abdelkader, Mohamed, et al. (creator_code:aut_t)
  • Sensitivity of transatlantic dust transport to chemical aging and related atmospheric processes
  • 2017
  • record:In_t: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 17:6, s. 3799-3821
  • swepub:Mat_article_t (swepub:level_refereed_t)abstract
    • We present a sensitivity study on transatlantic dust transport, a process which has many implications for the atmosphere, the ocean and the climate. We investigate the impact of key processes that control the dust outflow, i.e., the emission flux, convection schemes and the chemical aging of mineral dust, by using the EMAC model following Abdelkader et al. (2015). To characterize the dust outflow over the Atlantic Ocean, we distinguish two geographic zones: (i) dust interactions within the Intertropical Convergence Zone (ITCZ), or the dust-ITCZ interaction zone (DIZ), and (ii) the adjacent dust transport over the Atlantic Ocean (DTA) zone. In the latter zone, the dust loading shows a steep and linear gradient westward over the Atlantic Ocean since particle sedimentation is the dominant removal process, whereas in the DIZ zone aerosol-cloud interactions, wet deposition and scavenging processes determine the extent of the dust outflow. Generally, the EMAC simulated dust compares well with CALIPSO observations; however, our reference model configuration tends to overestimate the dust extinction at a lower elevation and underestimates it at a higher elevation. The aerosol optical depth (AOD) over the Caribbean responds to the dust emission flux only when the emitted dust mass is significantly increased over the source region in Africa by a factor of 10. These findings point to the dominant role of dust removal (especially wet deposition) in transatlantic dust transport. Experiments with different convection schemes have indeed revealed that the transatlantic dust transport is more sensitive to the convection scheme than to the dust emission flux parameterization. To study the impact of dust chemical aging, we focus on a major dust outflow in July 2009. We use the calcium cation as a proxy for the overall chemical reactive dust fraction and consider the uptake of major inorganic acids (i.e., H2SO4, HNO3 and HCl) and their anions, i.e., sulfate (SO42-), bisulfate (HSO4-), nitrate (NO 3) and chloride (Cl), on the surface of mineral particles. The subsequent neutralization reactions with the calcium cation form various salt compounds that cause the uptake of water vapor from the atmosphere, i.e., through the chemical aging of dust particles leading to an increase of 0.15 in the AOD under subsaturated conditions (July 2009 monthly mean). As a result of the radiative feedback on surface winds, dust emissions increased regionally. On the other hand, the aged dust particles, compared to the non-aged particles, are more efficiently removed by both wet and dry deposition due to the increased hygroscopicity and particle size (mainly due to water uptake). The enhanced removal of aged particles decreases the dust burden and lifetime, which indirectly reduces the dust AOD by 0.05 (monthly mean). Both processes can be significant (major dust outflow, July 2009), but the net effect depends on the region and level of dust chemical aging.
  •  
5.
  • Achtert, Peggy, 1982-, et al. (creator_code:aut_t)
  • On the linkage between tropospheric and Polar Stratospheric clouds in the Arctic as observed by space-borne lidar
  • 2012
  • record:In_t: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 12:8, s. 3791-3798
  • swepub:Mat_article_t (swepub:level_refereed_t)abstract
    • The type of Polar stratospheric clouds (PSCs) as well as their temporal and spatial extent are important for the occurrence of heterogeneous reactions in the polar stratosphere. The formation of PSCs depends strongly on temperature. However, the mechanisms of the formation of solid PSCs are still poorly understood. Recent satellite studies of Antarctic PSCs have shown that their formation can be associated with deep-tropospheric clouds which have the ability to cool the lower stratosphere radiatively and/or adiabatically. In the present study, lidar measurements aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite were used to investigate whether the formation of Arctic PSCs can be associated with deep-tropospheric clouds as well. Deep-tropospheric cloud systems have a vertical extent of more than 6.5 km with a cloud top height above 7 km altitude. PSCs observed by CALIPSO during the Arctic winter 2007/2008 were classified according to their type (STS, NAT, or ice) and to the kind of underlying tropospheric clouds. Our analysis reveals that 172 out of 211 observed PSCs occurred in connection with tropospheric clouds. 72% of these 172 observed PSCs occurred above deep-tropospheric clouds. We also find that the type of PSC seems to be connected to the characteristics of the underlying tropospheric cloud system. During the Arctic winter 2007/2008 PSCs consisting of ice were mainly observed in connection with deep-tropospheric cloud systems while no ice PSC was detected above cirrus. Furthermore, we find no correlation between the occurrence of PSCs and the top temperature of tropospheric clouds. Thus, our findings suggest that Arctic PSC formation is connected to adiabatice cooling, i.e. dynamic effects rather than radiative cooling.
  •  
6.
  • Achtert, Peggy, et al. (creator_code:aut_t)
  • Properties of Arctic liquid and mixed-phase clouds from shipborne Cloudnet observations during ACSE 2014
  • 2020
  • record:In_t: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 20:23, s. 14983-15002
  • swepub:Mat_article_t (swepub:level_refereed_t)abstract
    • This study presents Cloudnet retrievals of Arctic clouds from measurements conducted during a 3-month research expedition along the Siberian shelf during summer and autumn 2014. During autumn, we find a strong reduction in the occurrence of liquid clouds and an increase for both mixed-phase and ice clouds at low levels compared to summer. About 80 % of all liquid clouds observed during the research cruise show a liquid water path below the infrared black body limit of approximately 50 g m(-2). The majority of mixed-phase and ice clouds had an ice water path below 20 g m(-2). Cloud properties are analysed with respect to cloud-top temperature and boundary layer structure. Changes in these parameters have little effect on the geometric thickness of liquid clouds while mixed-phase clouds during warm-air advection events are generally thinner than when such events were absent. Cloud-top temperatures are very similar for all mixed-phase clouds. However, more cases of lower cloudtop temperature were observed in the absence of warm-air advection. Profiles of liquid and ice water content are normalized with respect to cloud base and height. For liquid water clouds, the liquid water content profile reveals a strong increase with height with a maximum within the upper quarter of the clouds followed by a sharp decrease towards cloud top. Liquid water content is lowest for clouds observed below an inversion during warm-air advection events. Most mixedphase clouds show a liquid water content profile with a very similar shape to that of liquid clouds but with lower maximum values during events with warm air above the planetary boundary layer. The normalized ice water content profiles in mixed-phase clouds look different from those of liquid water content. They show a wider range in maximum values with the lowest ice water content for clouds below an inversion and the highest values for clouds above or extending through an inversion. The ice water content profile generally peaks at a height below the peak in the liquid water content profile - usually in the centre of the cloud, sometimes closer to cloud base, likely due to particle sublimation as the crystals fall through the cloud.
  •  
7.
  • Adachi, Kouji, et al. (creator_code:aut_t)
  • Composition and mixing state of Arctic aerosol and cloud residual particles from long-term sinale-particle observations at Zeppelin Observatory, Svalbard
  • 2022
  • record:In_t: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 22:21, s. 14421-14439
  • swepub:Mat_article_t (swepub:level_refereed_t)abstract
    • The Arctic region is sensitive to climate change and is warming faster than the global average. Aerosol particles change cloud properties by acting as cloud condensation nuclei and ice-nucleating particles, thus influencing the Arctic climate system. Therefore, understanding the aerosol particle properties in the Arctic is needed to interpret and simulate their influences on climate. In this study, we collected ambient aerosol particles using whole-air and PM10 inlets and residual particles of cloud droplets and ice crystals from Arctic low-level clouds (typically, all-liquid or mixed-phase clouds) using a counterflow virtual impactor inlet at the Zeppelin Observatory near Ny-Ålesund, Svalbard, within a time frame of 4 years. We measured the composition and mixing state of individual fine-mode particles in 239 samples using transmission electron microscopy. On the basis of their composition, the aerosol and cloud residual particles were classified as mineral dust, sea salt, K-bearing, sulfate, and carbonaceous particles. The number fraction of aerosol particles showed seasonal changes, with sulfate dominating in summer and sea salt increasing in winter. There was no measurable difference in the fractions between ambient aerosol and cloud residual particles collected at ambient temperatures above 0 ∘C. On the other hand, cloud residual samples collected at ambient temperatures below 0 ∘C had several times more sea salt and mineral dust particles and fewer sulfates than ambient aerosol samples, suggesting that sea spray and mineral dust particles may influence the formation of cloud particles in Arctic mixed-phase clouds. We also found that 43 % of mineral dust particles from cloud residual samples were mixed with sea salt, whereas only 18 % of mineral dust particles in ambient aerosol samples were mixed with sea salt. This study highlights the variety in aerosol compositions and mixing states that influence or are influenced by aerosol–cloud interactions in Arctic low-level clouds.
  •  
8.
  • Agustí-Panareda, Anna, et al. (creator_code:aut_t)
  • Modelling CO2 weather-why horizontal resolution matters
  • 2019
  • record:In_t: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 19:11, s. 7347-7376
  • swepub:Mat_article_t (swepub:level_refereed_t)abstract
    • Climate change mitigation efforts require information on the current greenhouse gas atmospheric concentrations and their sources and sinks. Carbon dioxide (CO2) is the most abundant anthropogenic greenhouse gas. Its variability in the atmosphere is modulated by the synergy between weather and CO2 surface fluxes, often referred to as CO2 weather. It is interpreted with the help of global or regional numerical transport models, with horizontal resolutions ranging from a few hundreds of kilometres to a few kilometres. Changes in the model horizontal resolution affect not only atmospheric transport but also the representation of topography and surface CO2 fluxes. This paper assesses the impact of horizontal resolution on the simulated atmospheric CO2 variability with a numerical weather prediction model. The simulations are performed using the Copernicus Atmosphere Monitoring Service (CAMS) CO2 forecasting system at different resolutions from 9 to 80 km and are evaluated using in situ atmospheric surface measurements and atmospheric column-mean observations of CO2, as well as radiosonde and SYNOP observations of the winds. The results indicate that both diurnal and day-to-day variability of atmospheric CO2 are generally better represented at high resolution, as shown by a reduction in the errors in simulated wind and CO2. Mountain stations display the largest improvements at high resolution as they directly benefit from the more realistic orography. In addition, the CO2 spatial gradients are generally improved with increasing resolution for both stations near the surface and those observing the total column, as the overall inter-station error is also reduced in magnitude. However, close to emission hotspots, the high resolution can also lead to a deterioration of the simulation skill, highlighting uncertainties in the high-resolution fluxes that are more diffuse at lower resolutions. We conclude that increasing horizontal resolution matters for modelling CO2 weather because it has the potential to bring together improvements in the surface representation of both winds and CO2 fluxes, as well as an expected reduction in numerical errors of transport. Modelling applications like atmospheric inversion systems to estimate surface fluxes will only be able to benefit fully from upgrades in horizontal resolution if the topography, winds and prior flux distribution are also upgraded accordingly. It is clear from the results that an additional increase in resolution might reduce errors even further. However, the horizontal resolution sensitivity tests indicate that the change in the CO2 and wind modelling error with resolution is not linear, making it difficult to quantify the improvement beyond the tested resolutions. Finally, we show that the high-resolution simulations are useful for the assessment of the small-scale variability of CO2 which cannot be represented in coarser-resolution models. These representativeness errors need to be considered when assimilating in situ data and high-resolution satellite data such as Greenhouse gases Observing Satellite (GOSAT), Orbiting Carbon Observatory-2 (OCO-2), the Chinese Carbon Dioxide Observation Satellite Mission (TanSat) and future missions such as the Geostationary Carbon Observatory (GeoCarb) and the Sentinel satellite constellation for CO2. For these reasons, the high-resolution CO2 simulations provided by the CAMS in real time can be useful to estimate such small-scale variability in real time, as well as providing boundary conditions for regional modelling studies and supporting field experiments.
  •  
9.
  • Ahlberg, Erik, et al. (creator_code:aut_t)
  • Effect of salt seed particle surface area, composition and phase on secondary organic aerosol mass yields in oxidation flow reactors
  • 2019
  • record:In_t: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 19:4, s. 2701-2712
  • swepub:Mat_article_t (swepub:level_refereed_t)abstract
    • Atmospheric particulate water is ubiquitous, affecting particle transport and uptake of gases. Yet, research on the effect of water on secondary organic aerosol (SOA) mass yields is not consistent. In this study, the SOA mass yields of an α-pinene and m-xylene mixture, at a concentration of 60 μgm-3, were examined using an oxidation flow reactor operated at a relative humidity (RH) of 60% and a residence time of 160 s. Wet or dried ammonium sulfate and ammonium nitrate seed particles were used. By varying the amount of seed particle surface area, the underestimation of SOA formation induced by the short residence time in flow reactors was confirmed. Starting at a SOA mass concentration of 5 μgm-3, the maximum yield increased by a factor of 2 with dry seed particles and on average a factor of 3.2 with wet seed particles. Hence, wet particles increased the SOA mass yield by 60% compared to the dry experiment. Maximum yield in the reactor was achieved using a surface area concentration of 1600 μm2 cm-3. This corresponded to a condensational lifetime of 20 s for low-volatility organics. The O V C ratio of SOA on wet ammonium sulfate was significantly higher than when using ammonium nitrate or dry ammonium sulfate seed particles, probably due to differences in heterogeneous chemistry.
  •  
10.
  • Ahlberg, Erik, et al. (creator_code:aut_t)
  • Measurement report : Black carbon properties and concentrations in southern Sweden urban and rural air-the importance of long-range transport
  • 2023
  • record:In_t: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 23:5, s. 3051-3064
  • swepub:Mat_article_t (swepub:level_refereed_t)abstract
    • Soot, or black carbon (BC), aerosol is a major climate forcer with severe health effects. The impacts depend strongly on particle number concentration, size and mixing state. This work reports on two field campaigns at nearby urban and rural sites, 65gkm apart, in southern Sweden during late summer 2018. BC was measured using a single-particle soot photometer (SP2) and Aethalometers (AE33). Differences in BC concentrations between the sites are driven primarily by local traffic emissions. Equivalent and refractory BC mass concentrations at the urban site were on average a factor 2.2 and 2.5, with peaks during rush hour up to a factor g1/44, higher than the rural background levels. The number fraction of particles containing a soot core was significantly higher in the city. BC particles at the urban site were on average smaller by mass and had less coating owing to fresh traffic emissions. The organic components of the fresh traffic plumes were similar in mass spectral signature to hydrocarbon-like organic aerosol (HOA), commonly associated with traffic. Despite the intense local traffic (g1/4g30g000 vehicles passing per day), PM1, including organic aerosol, was dominated by aged continental air masses even at the curbside site. The fraction of thickly coated particles at the urban site was highly correlated with the mass concentrations of all measured chemical species of PM1, consistent with aged, internally mixed aerosol. Trajectory analysis for the whole year showed that air masses arriving at the rural site from eastern Europe contained approximately double the amount of BC compared to air masses from western Europe. Furthermore, the largest regional emissions of BC transported to the rural site, from the Malmö-Copenhagen urban area, are discernible above background levels only when precipitation events are excluded. We show that continental Europe and not the Malmö-Copenhagen region is the major contributor to the background BC mass concentrations in southern Sweden.
  •  
Skapa referenser, mejla, bekava och länka
  • navigation:Result_t 1-10 navigation:of_t 579
swepub:Mat_t
swepub:mat_article_t (573)
swepub:mat_researchreview_t (6)
swepub:Level_t
swepub:level_refereed_t (579)
swepub:Hitlist_author_t
Krejci, Radovan (47)
Murtagh, Donal, 1959 (37)
Tunved, Peter (36)
Kulmala, M (35)
Riipinen, Ilona (34)
Kulmala, Markku (31)
deldatabas:search_more_t
Simpson, David, 1961 (29)
Swietlicki, Erik (29)
Urban, Joachim, 1964 (27)
Ström, Johan (26)
Hallquist, Mattias, ... (23)
Hansson, Hans-Christ ... (21)
Ekman, Annica M. L. (21)
Eriksson, Patrick, 1 ... (19)
Mohr, Claudia (18)
Tjernström, Michael (17)
Petaja, T. (17)
Baltensperger, Urs (16)
Zieger, Paul (15)
Roldin, Pontus (15)
Mellqvist, Johan, 19 ... (15)
Kristensson, Adam (14)
Milz, Mathias (14)
Petäjä, Tuukka (14)
Wiedensohler, A. (13)
Walker, K. A. (13)
Wiedensohler, Alfred (13)
Coe, H. (13)
Virtanen, Annele (12)
Blumenstock, T. (12)
Gumbel, Jörg (11)
Baltensperger, U. (11)
Hase, F. (11)
Yttri, K. E. (10)
Thomson, Erik S (10)
Li, X. (9)
Fischer, H. (9)
Schneider, M. (9)
Johansson, Christer (9)
Massling, Andreas (9)
Svenningsson, Birgit ... (9)
Ahlm, Lars (9)
Laaksonen, A. (9)
Pandis, S. N. (9)
Mahieu, E. (9)
Notholt, J. (9)
Skov, H. (9)
Kerminen, Veli-Matti (9)
Nieminen, T. (9)
de Leeuw, G. (9)
deldatabas:search_less_t
swepub:Hitlist_uni_t
swepub_uni:su_t (308)
swepub_uni:cth_t (118)
swepub_uni:lu_t (86)
swepub_uni:gu_t (78)
swepub_uni:ltu_t (33)
swepub_uni:uu_t (21)
deldatabas:search_more_t
swepub_uni:ivl_t (16)
swepub_uni:umu_t (7)
swepub_uni:kth_t (7)
swepub_uni:oru_t (4)
swepub_uni:liu_t (2)
swepub_uni:ri_t (2)
swepub_uni:slu_t (2)
swepub_uni:mau_t (1)
swepub_uni:lnu_t (1)
swepub_uni:ki_t (1)
swepub_uni:vti_t (1)
deldatabas:search_less_t
hitlist:Language_t
language:Eng_t (579)
hitlist:HSV_t
hsv:Cat_1_t (503)
hsv:Cat_2_t (41)
hsv:Cat_3_t (1)

hitlist:Year_t

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt tools:Close_t

tools:Permalink_label_t