SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1352 2310 ;pers:(Hansson Hans Christen)"

Sökning: L773:1352 2310 > Hansson Hans Christen

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Svenningsson, Birgitta, et al. (författare)
  • Cloud droplet nucleation scavenging in relation to the size and hygroscopic behaviour of aerosol particles
  • 1997
  • Ingår i: Atmospheric Environment. - 1352-2310. ; 31:16, s. 2463-2475
  • Tidskriftsartikel (refereegranskat)abstract
    • The size distributions and hygroscopic growth spectra of aerosol particles were measured during the GCE cloud experiment at Great Dun Fell in the Pennine Hills in northern England. Hygroscopic growth is defined as the particle diameter at 90% RH divided by the particle diameter at 10% RH. The fraction of the aerosol particles scavenged by cloud droplets as a function of particle size was also measured. The general aerosol type was a mixture of marine and aged anthropogenic aerosols. The Aitken and accumulation mode numbers (average ± 1 S.D.) were 1543 ± 1078 and 1023 ± 682 cm-3, respectively. The mean diameters were in the range 30-100 nm and 100-330 nm. The hygroscopic growth spectra were bimodal about half the time. The less-hygroscopic particles had average growth factors of 1.06, 1.06; 1.03, 1.03, and 1.03 for particle diameters of 50, 75, 110, 165, and 265 nm, respectively. For the more-hygroscopic particles of the same sizes, the average hygroscopic growth was 1.34, 1.37, 1.43, 1.47, and 1.53. The effects of ageing on the aerosol particle size distribution and on hygroscopic behaviour are discussed. The scavenged fraction of aerosol particles was a strong function of particle diameter. The diameter with 50% scavenging was in the range 90-220 nm. No tail of smaller particles activated to cloud drops was observed. A small tail of larger particles that remained in the interstitial aerosol can be explained by there being a small fraction of less-hygroscopic particles. A weak correlation between the integral dry particle diameter and the diameter with 50% scavenging was seen.
  •  
2.
  • Swietlicki, Erik, et al. (författare)
  • Source identification during the Great Dun Fell Cloud Experiment 1993
  • 1997
  • Ingår i: Atmospheric Environment. - 1352-2310. ; 31:16, s. 2441-2451
  • Tidskriftsartikel (refereegranskat)abstract
    • A characterisation of the sources influencing the site for the final field campaign of the EUROTRAC subproject GCE (Ground-based Cloud Experiment) at Great Dun Fell, Cumbria, Great Britain in April-May 1993 is presented. The sources were characterised mainly by means of aerosol filter and cascade impactor data, single particle analysis, gas data, data on aromatic organic compounds, cloud water ionic composition, measurements of aerosol size distributions and hygroscopic properties and various meteorological information. Receptor models applied on the aerosol filter and impactor data sets separately revealed two major source types being a marine sea spray source and a long-range transported anthropogenic pollution source. The results of the receptor models were largely consistent with the other observations used in the source identification. Periods of considerable anthropogenic pollution as well as almost pure marine air masses were clearly identified during the course of the experiment.
  •  
3.
  •  
4.
  • Monks, P. S., et al. (författare)
  • Atmospheric composition change : global and regional air quality
  • 2009
  • Ingår i: Atmospheric Environment. - : Elsevier BV. - 1352-2310 .- 1873-2844. ; 43:33, s. 5268-5350
  • Forskningsöversikt (refereegranskat)abstract
    • Air quality transcends all scales with in the atmosphere from the local to the global with handovers and feedbacks at each scale interaction. Air quality has manifold effects on health, ecosystems heritage and, climate. In this review the state of scientific understanding in relation to global and regional air quality is outlined. The review discusses air quality, in terms of emissions, processing and transport of trace gases and aerosols. New insights into the characterization of both natural and anthropogenic emissions are reviewed looking at both natural (e.g. dust and lightning) as well as plant emissions. Trends in anthropogenic emissions both by region and globally are discussed as well as biomass burning emissions. In terms of chemical processing the major air quality elements of ozone, non-methane hydrocarbons, nitrogen oxides and aerosols are covered. A number of topics are presented as a way of integrating the process view into the atmospheric context; these include the atmospheric oxidation efficiency, halogen and HOx chemistry, nighttime chemistry, tropical chemistry, heat waves, megacities, biomass burning and the regional hot spot of the Mediterranean. New findings with respect to the transport of pollutants across the scales are discussed, in particular the move to quantify the impact of long-range transport on regional air quality. Gaps and research questions that remain intractable are identified. The review concludes with a focus of research and policy questions for the coming decade. In particular, the policy challenges for concerted air quality and climate change policy (co-benefit) are discussed.
  •  
5.
  •  
6.
  • Putaud, J. -P, et al. (författare)
  • A European aerosol phenomenology-3 : Physical and chemical characteristics of particulate matter from 60 rural, urban, and kerbside sites across Europe
  • 2010
  • Ingår i: Atmospheric Environment. - : Elsevier BV. - 1352-2310 .- 1873-2844. ; 44:10, s. 1308-1320
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper synthesizes data on aerosol (particulate matter, PM) physical and chemical characteristics, which were obtained over the past decade in aerosol research and monitoring activities at more than 60 natural background, rural, near-city, urban, and kerbside sites across Europe. The data include simultaneously measured PM10 and/or PM2.5 mass on the one hand, and aerosol particle number concentrations or PM chemistry on the other hand. The aerosol data presented in our previous works (Van Dingenen et al., 2004; Putaud et al., 2004) were updated and merged to those collected in the framework of the EU supported European Cooperation in the field of Scientific and Technical action COST633 (Particulate matter: Properties related to health effects). A number of conclusions from our previous studies were confirmed. There is no single ratio between PM2.5 and PM10 mass concentrations valid for all sites, although fairly constant ratios ranging from 0.5 to 0.9 are observed at most individual sites. There is no general correlation between PM mass and particle number concentrations, although particle number concentrations increase with PM2.5 levels at most sites. The main constituents of both PM10 and PM2.5 are generally organic matter, sulfate and nitrate. Mineral dust can also be a major constituent of PM10 at kerbside sites and in Southern Europe. There is a clear decreasing gradient in SO42- and NO3- contribution to PM10 when moving from rural to urban to kerbside sites. In contrast, the total carbon/PM10 ratio increases from rural to kerbside sites. Some new conclusions were also drawn from this work: the ratio between ultrafine particle and total particle number concentration decreases with PM2.5 concentration at all sites but one, and significant gradients in PM chemistry are observed when moving from Northwestern, to Southern to Central Europe. Compiling an even larger number of data sets would have further increased the significance of our conclusions, but collecting all the aerosol data sets obtained also through research projects remains a tedious task.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy