SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Murtagh Donal P. 1959 ) "

Sökning: WFRF:(Murtagh Donal P. 1959 )

  • Resultat 31-40 av 67
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
31.
  • Angelbratt, Jon, 1981, et al. (författare)
  • A new method to detect long term trends of methane (CH4) and nitrous oxide (N2O) total columns measured within the NDACC ground-based high resolution solar FTIR network
  • 2011
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 11:13, s. 6167-6183
  • Tidskriftsartikel (refereegranskat)abstract
    • Total columns measured with the ground-based solar FTIR technique are highly variable in time due to atmospheric chemistry and dynamics in the atmosphere above the measurement station. In this paper, a multiple regression model with anomalies of air pressure, total columns of hydrogen fluoride (HF) and carbon monoxide (CO) and tropopause height are used to reduce the variability in the methane (CH(4)) and nitrous oxide (N(2)O) total columns to estimate reliable linear trends with as small uncertainties as possible. The method is developed at the Harestua station (60 degrees N, 11 degrees E, 600 ma.s.l.) and used on three other European FTIR stations, i.e. Jungfraujoch (47 degrees N, 8 degrees E, 3600 ma.s.l.), Zugspitze (47 degrees N, 11 degrees E, 3000 ma.s.l.), and Kiruna (68 degrees N, 20 degrees E, 400 ma.s.l.). Linear CH(4) trends between 0.13 +/- 0.01-0.25 +/- 0.02% yr(-1) were estimated for all stations in the 1996-2009 period. A piecewise model with three separate linear trends, connected at change points, was used to estimate the short term fluctuations in the CH(4) total columns. This model shows a growth in 1996-1999 followed by a period of steady state until 2007. From 2007 until 2009 the atmospheric CH(4) amount increases between 0.57 +/- 0.22-1.15 +/- 0.17% yr(-1). Linear N(2)O trends between 0.19 +/- 0.01-0.40 +/- 0.02% yr(-1) were estimated for all stations in the 1996-2007 period, here with the strongest trend at Harestua and Kiruna and the lowest at the Alp stations. From the N(2)O total columns crude tropospheric and stratospheric partial columns were derived, indicating that the observed difference in the N(2)O trends between the FTIR sites is of stratospheric origin. This agrees well with the N(2)O measurements by the SMR instrument onboard the Odin satellite showing the highest trends at Harestua, 0.98 +/- 0.28% yr(-1), and considerably smaller trends at lower latitudes, 0.27 +/- 0.25% yr(-1). The multiple regression model was compared with two other trend methods, the ordinary linear regression and a Bootstrap algorithm. The multiple regression model estimated CH(4) and N(2)O trends that differed up to 31% compared to the other two methods and had uncertainties that were up to 300% lower. Since the multiple regression method were carefully validated this stresses the importance to account for variability in the total columns when estimating trend from solar FTIR data.
  •  
32.
  • Baron, P., et al. (författare)
  • HO2 measurements in the stratosphere and the mesosphere from the sub-millimetre limb sounder Odin/SMR
  • 2009
  • Ingår i: International Journal of Remote Sensing. - : Informa UK Limited. - 1366-5901 .- 0143-1161. ; 30:15-16, s. 4195-4208
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper presents observations of the hydroperoxy radical (HO 2 ) performed by the Odin/SMR instrument from the middle stratosphere to the upper mesosphere (35-90 km). The data set covers the period from October 2003 to December 2005 on a basis of one observation period of 24 hours each month. Odin/SMR can provide two zonal maps of HO 2 per day, with a vertical resolution of 10 km. The non-standard processing applied to the retrievals is described. The consistency between HO 2 observations from three periods in August 2004 demonstrates the robustness of the retrieval method. It also shows that the measurements are sensitive enough to detect changes in the middle and upper mesosphere. The retrieval needs further improvements for studying stratospheric variations. © 2009 Taylor & Francis.
  •  
33.
  • Baron, P., et al. (författare)
  • Measurement of stratospheric and mesospheric winds with a submillimeter wave limb sounder: results from JEM/SMILES and simulation study for SMILES-2
  • 2015
  • Ingår i: Proceedings of SPIE - The International Society for Optical Engineering. - : SPIE. - 0277-786X .- 1996-756X. - 9781628418491 ; 9639, s. Article no. 96390N-
  • Konferensbidrag (refereegranskat)abstract
    • Satellite missions for measuring winds in the troposphere and thermosphere will be launched in a near future. There is no plan to observe winds in the altitude range between 30-90 km, though middle atmospheric winds are recognized as an essential parameter in various atmospheric research areas. Sub-millimetre limb sounders have the capability to fill this altitude gap. In this paper, we summarize the wind retrievals obtained from the Japanese Superconducting Submillimeter Wave Limb Emission Sounder (SMILES) which operated from the International Space Station between September 2009 and April 2010. The results illustrate the potential of such instruments to measure winds. They also show the need of improving the wind representation in the models in the Tropics, and globally in the mesosphere. A wind measurement sensitivity study has been conducted for its successor, SMILES-2, which is being studied in Japan. If it is realized, sub-millimeter and terahertz molecular lines suitable to determine line-of-sight winds will be measured. It is shown that with the current instrument definition, line-of-sight winds can be observed from 20 km up to more than 160 km. Winds can be retrieved with a precision better than 5 m s(-1) and a vertical resolution of 2-3 km between 35-90 km. Above 90 km, the precision is better than 10 m s(-1) with a vertical resolution of 3-5 km. Measurements can be performed day and night with a similar sensitivity. Requirements on observation parameters such as the antenna size, the satellite altitude are discussed. An alternative setting for the spectral bands is examined. The new setting is compatible with the general scientific objectives of the mission and the instrument design. It allows to improve the wind measurement sensitivity between 35 to 90 km by a factor 2. It is also shown that retrievals can be performed with a vertical resolution of 1 km and a precision of 5-10 m s(-1) between 50 and 90 km. RAGAM A, 1953, PHYSICAL REVIEW, V92, P1448
  •  
34.
  • Baron, P., et al. (författare)
  • Observation of horizontal winds in the middle-atmosphere between 30 degrees S and 55 degrees N during the northern winter 2009-2010
  • 2013
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 13:12, s. 6049-6064
  • Tidskriftsartikel (refereegranskat)abstract
    • Although the links between stratospheric dynamics, climate and weather have been demonstrated, direct observations of stratospheric winds are lacking, in particular at altitudes above 30 km. We report observations of winds between 8 and 0.01 hPa (similar to 35-80 km) from October 2009 to April 2010 by the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) on the International Space Station. The altitude range covers the region between 35-60 km where previous space-borne wind instruments show a lack of sensitivity. Both zonal and meridional wind components were obtained, though not simultaneously, in the latitude range from 30 degrees S to 55 degrees N and with a single profile precision of 7-9 ms(-1) between 8 and 0.6 hPa and better than 20 ms(-1) at altitudes above. The vertical resolution is 5-7 km except in the upper part of the retrieval range (10 km at 0.01 hPa). In the region between 1-0.05 hPa, an absolute value of the mean difference 5 ms(-1)). In the mesosphere, SMILES and ECMWF zonal winds exhibit large differences (>20 ms(-1)), especially in the tropics. We illustrate our results by showing daily and monthly zonal wind variations, namely the semi-annual oscillation in the tropics and reversals of the flow direction between 50-55 degrees N during sudden stratospheric warmings. The daily comparison with ECMWF winds reveals that in the beginning of February, a significantly stronger zonal westward flow is measured in the tropics at 2 hPa compared to the flow computed in the analysis (difference of similar to 20 ms(-1)). The results show that the comparison between SMILES and ECMWF winds is not only relevant for the quality assessment of the new SMILES winds, but it also provides insights on the quality of the ECMWF winds themselves. Although the instrument was not specifically designed for measuring winds, the results demonstrate that space-borne sub-mm wave radiometers have the potential to provide good quality data for improving the stratospheric winds in atmospheric models.
  •  
35.
  • Baron, P., et al. (författare)
  • Performance Assessment of Superconducting Submillimeter-Wave Limb-Emission Sounder-2 (SMILES-2)
  • 2019
  • Ingår i: International Geoscience and Remote Sensing Symposium (IGARSS). ; , s. 7556-7559
  • Konferensbidrag (refereegranskat)abstract
    • © 2019 IEEE. SMILES2 is a mission prepared for the next call-for-proposals for JAXA/ISAS M-class scientific satellite mission. It aims at scanning the atmospheric limb from 20 to 160 km above the surface at frequencies near 700 GHz and 2 THz. It could provide the temperature and composition as well as, for the first time, the horizontal wind vector above 30 km, the atomic oxygen in its ground state above 90 km, and the atmospheric density and the geomagnetic field vector near the mesopause. The mission is proposed for the 2nd time and the instrument design has been improved for accounting for the recommendations of the review committee. In this publication, we discuss the measurement performances assessed from simulations including latest results showing the mission potential for measuring the geomagnetic field between 70-110 km.
  •  
36.
  • Baron, P., et al. (författare)
  • Potential for the measurement of mesosphere and lower thermosphere (MLT) wind, temperature, density and geomagnetic field with Superconducting Submillimeter-Wave Limb-Emission Sounder 2 (SMILES-2)
  • 2020
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 13:1, s. 219-237
  • Tidskriftsartikel (refereegranskat)abstract
    • Submillimeter-Wave Limb-Emission Sounder 2 (SMILES-2) is a satellite mission proposed in Japan to probe the middle and upper atmosphere (20-160 km). The main instrument is composed of 4K cooled radiometers operating near 0.7 and 2 THz. It could measure the diurnal changes of the horizontal wind above 30 km, temperature above 20 km, ground-state atomic oxygen above 90 km and atmospheric density near the mesopause, as well as abundance of about 15 chemical species. In this study we have conducted simulations to assess the wind, temperature and density retrieval performance in the mesosphere and lower thermosphere (60- 110 km) using the radiometer at 760 GHz. It contains lines of water vapor (H2O), molecular oxygen (O2) and nitric oxide (NO) that are the strongest signals measured with SMILES-2 at these altitudes. The Zeeman effect on the O2 line due to the geomagnetic field (B) is considered; otherwise, the retrieval errors would be underestimated by a factor of 2 above 90 km. The optimal configuration for the radiometer's polarization is found to be vertical linear. Considering a retrieval vertical resolution of 2.5 km, the line-of-sight wind is retrieved with a precision of 2-5ms-1 up to 90 km and 30ms-1 at 110 km. Temperature and atmospheric density are retrieved with a precision better than 5K and 7% up to 90 km (30K and 20% at 110 km). Errors induced by uncertainties on the vector B are mitigated by retrieving it. The retrieval of B is described as a side-product of the mission. At high latitudes, precisions of 30-100 nT on the vertical component and 100-300 nT on the horizontal one could be obtained at 85 and 105 km (vertical resolution of 20 km). SMILES-2 could therefore provide the first measurements of B close to the electrojets' altitude, and the precision is enough to measure variations induced by solar storms in the auroral regions.
  •  
37.
  • Baron, P., et al. (författare)
  • Simulation study for the Stratospheric Inferred Winds (SIW) sub-millimeter limb sounder
  • 2018
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 11:7, s. 4545-4566
  • Tidskriftsartikel (refereegranskat)abstract
    • Stratospheric Inferred Winds (SIW) is a Swedish mini sub-millimeter limb sounder selected for the 2nd InnoSat platform, with launch planned for around 2022. It is intended to fill the altitude gap between 30 and 70 km in atmospheric wind measurements and also aims at pursuing the limb observations of temperature and key atmospheric constituents between 10 and 90 km when current satellite missions will probably come to an end. Line-of-sight winds are retrieved from the Doppler shift of molecular emission lines introduced by the wind field. Observations will be performed with two antennas pointing toward the limb in perpendicular directions in order to reconstruct the 2-D horizontal wind vector. Each antenna has a vertical field of view (FOV) of 5 km. The chosen spectral band, near 655 GHz, contains a dense group of strong O3 lines suitable for exploiting the small amount of wind information in stratospheric spectra. Using both sidebands of the heterodyne receiver, a large number of chemical species will be measured, including O3 isotopologues, H2O, HDO, HCl, ClO, N2O, HNO3, NO, NO2, HCN, CH3CN and HO2. This paper presents a simulation study that assesses measurement performance. The line-of-sight winds are retrieved between 30 and 90 km with the best sensitivity between 35 and 70 km, where the precision (1 σ ) is 5-10 mĝ€†sĝ'1 for a single scan. Similar performance can be obtained during day and night conditions except in the lower mesosphere, where the photo-dissociation of O3 in daytime reduces the sensitivity by 50 % near 70 km. Profiles of O3, H2O and temperature are retrieved with high precision up to 50 km ( < 1 %, < 2 %, 1 K, respectively). Systematic errors due to uncertainties in spectroscopic parameters, in the radiometer sideband ratio and in the radiance calibration process are investigated. A large wind retrieval bias of 10-30 mĝ€†sĝ'1 between 30 and 40 km could be induced by the air-broadening parameter uncertainties of O3 lines. This highlights the need for good knowledge of these parameters and for studying methods to mitigate the retrieval bias..
  •  
38.
  • Baron, P., et al. (författare)
  • The Level 2 research product algorithms for the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES)
  • 2011
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 4, s. 2105-2124
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper describes the algorithms of the level-2 research (L2r) processing chain developed for the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES). The chain has been developed in parallel to the operational chain for conducting researches on calibration and retrieval algorithms. L2r chain products are available to the scientific community. The objective of version 2 is the retrieval of the vertical distribution of trace gases in the altitude range of 18–90 km. A theoretical error analysis is conducted to estimate the retrieval feasibility of key parameters of the processing: line-of-sight elevation tangent altitudes (or angles), temperature and ozone profiles. While pointing information is often retrieved from molecular oxygen lines, there is no oxygen line in the SMILES spectra, so the strong ozone line at 625.371 GHz has been chosen. The pointing parameters and the ozone profiles are retrieved from the line wings which are measured with high signal to noise ratio, whereas the temperature profile is retrieved from the optically thick line center. The main systematic component of the retrieval error was found to be the neglect of the non-linearity of the radiometric gain in the calibration procedure. This causes a temperature retrieval error of 5–10 K. Because of these large temperature errors, it is not possible to construct a reliable hydrostatic pressure profile. However, as a consequence of the retrieval of pointing parameters, pressure induced errors are significantly reduced if the retrieved trace gas profiles are represented on pressure levels instead of geometric altitude levels. Further, various setups of trace gas retrievals have been tested. The error analysis for the retrieved HOCl profile demonstrates that best results for inverting weak lines can be obtained by using narrow spectral windows.
  •  
39.
  • Barret, B., et al. (författare)
  • Intercomparisons of trace gases profiles from the Odin/SMR and Aura/MLS limb sounders
  • 2006
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 111:D21
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper presents the intercomparison of O(3), HNO(3), ClO, N(2)O and CO profiles measured by the two spaceborne microwave instruments MLS ( Microwave Limb Sounder) and SMR ( Submillimetre Radiometer) on board the Aura and Odin satellites, respectively. We compared version 1.5 level 2 data from MLS with level 2 data produced by the French data processor version 222 and 225 and by the Swedish data processor version 2.0 for several days in September 2004 and in March 2005. For the five gases studied, an overall good agreement is found between both instruments. Most of the observed discrepancies between SMR and MLS are consistent with results from other intercomparison studies involving MLS or SMR. O(3) profiles retrieved from the SMR 501.8 GHz band are noisier than MLS profiles but mean biases between both instruments do not exceed 10%. SMR HNO(3) profiles are biased low relative to MLS's by similar to 30% above the profile peak. In the lower stratosphere, MLS ClO profiles are biased low by up to 0.3 ppbv relative to coincident SMR profiles, except in the Southern Hemisphere polar vortex in the presence of chlorine activation. N(2)O profiles from both instruments are in very good agreement with mean biases not exceeding 15%. Finally, the intercomparison between SMR and MLS CO profiles has shown a good agreement from the middle stratosphere to the middle mesosphere in spite of strong oscillations in the MLS profiles. In the upper mesosphere, MLS CO concentrations are biased high relative to SMR while negative values in the MLS retrievals are responsible for a negative bias in the tropics around 30 hPa.
  •  
40.
  • Berthet, G., et al. (författare)
  • Nighttime chlorine monoxide observations by the Odin satellite and implications for the ClO/Cl2O2 equilibrium
  • 2005
  • Ingår i: Geophysical Research Letters. - 1944-8007 .- 0094-8276. ; 32:11, s. 1-5
  • Tidskriftsartikel (refereegranskat)abstract
    • We use measurements of chlorine monoxide (ClO) by the SMR instrument onboard the Odin satellite to study the nighttime thermal equilibrium between ClO and its dimer Cl2O2. Observations performed in the polar vortex during the 2002-2003 Arctic winter showed enhanced amounts of nighttime ClO over a wide range of stratospheric temperatures (185
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 31-40 av 67

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy