SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Höpfner M.) "

Sökning: WFRF:(Höpfner M.)

  • Resultat 1-10 av 20
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Höpfner, M., et al. (författare)
  • The natural greenhouse effect of atmospheric oxygen (O2) and nitrogen (N2)
  • 2012
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 39:10
  • Tidskriftsartikel (refereegranskat)abstract
    • The effect of collision-induced absorption by molecular oxygen (O 2) and nitrogen (N 2) on the outgoing longwave radiation (OLR) of the Earth's atmosphere has been quantified. We have found that on global average under clear-sky conditions the OLR is reduced due to O 2 by 0.11 Wm -2 and due to N 2 by 0.17 Wm -2. Together this amounts to 15% of the OLR-reduction caused by CH 4 at present atmospheric concentrations. Over Antarctica the combined effect of O 2 and N 2 increases on average to about 38% of CH 4 with single values reaching up to 80%. This is explained by less interference of H 2O spectral bands on the absorption features of O 2 and N 2 for dry atmospheric conditions.
  •  
2.
  • Lossow, Stefan, 1977, et al. (författare)
  • Comparison of HDO measurements from Envisat/MIPAS with observations by Odin/SMR and SCISAT/ACE-FTS
  • 2011
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 4:9, s. 1855-1874
  • Tidskriftsartikel (refereegranskat)abstract
    • Measurements of thermal emission in the mid-infrared by Envisat/MIPAS allow the retrieval of HDO information roughly in the altitude range between 10 km and 50 km. From June 2002 to March 2004 MIPAS performed measurements in the full spectral resolution mode. To assess the quality of the HDO data set obtained during that period comparisons with measurements by Odin/SMR and SCISAT/ACE-FTS were performed. Comparisons were made on profile-to-profile basis as well as using seasonal and monthly averages. All in all the comparisons yield favourable results. The largest deviations between MIPAS and ACE-FTS are observed below 15 km, where relative deviations can occasionally exceed 100%. Despite these deviations in the absolute amount of HDO the latitudinal structures observed by both instruments are consistent in this altitude range. Between 15 km and 20 km there is less good agreement, in particular in the Antarctic during winter and spring. Also in the tropics some deviations are found. Above 20 km there is a high consistency in the structures observed by all three instruments. MIPAS and ACE-FTS typically agree within 10%, with MIPAS mostly showing higher abundances than ACE-FTS. Both data sets show considerably more HDO than SMR. This bias can be explained basically by uncertainties in spectroscopic parameters. Above 40 km, where the MIPAS HDO retrieval reaches its limits, still good agreement with the structures observed by SMR is found for most seasons. This puts some confidence in the MIPAS data at these altitudes.
  •  
3.
  • Chauhan, Swarup, et al. (författare)
  • MIPAS reduced spectral resolution UTLS-1 mode measurements of temperature, O3, HNO3, N2O, H2O and relative humidity over ice: retrievals and comparison to MLS
  • 2009
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; :2, s. 337-353
  • Tidskriftsartikel (refereegranskat)abstract
    • During several periods since 2005 the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on Envisat has performed observations dedicated to the region of the upper troposphere/lower stratosphere (UTLS). For the duration of November/December 2005 global distributions of temperature and several trace gases from MIPAS UTLS-1 mode measurements have been retrieved using the IMK/IAA (Institut für Meteorologie und Klimaforschung/Instituto de Astrofísica de Andalucía) scientific processor. In the UTLS region a vertical resolution of 3 km for temperaure, 3 to 4 km for H2O, 2.5 to 3 km for O3, 3.5 km for HNO3 and 3.5 to 2.5 km for N2O has been achieved. The retrieved temperature, H2O, O3, HNO3, N2O, and relative humidity over ice are intercompared with the Microwave Limb Sounder (MLS/Aura) v2.2 data in the pressure range 316 to 0.68 hPa, 316 to 0.68 hPa, 215 to 0.68 hPa, 215 to 3.16 hPa, 100 to 1 hPa and 316 to 10 hPa, respectively. In general, MIPAS and MLS temperatures are biased within ±4 K over the whole pressure and latitude range. Systematic, latitude-independent differences of −2 to −4 K (MIPAS-MLS) at 121 hPa are explained by previously observed biases in the MLS v2.2 temperature retrievals. Temperature differences of −4 K up to 12 K above 10.0 hPa are present both in MIPAS and MLS with respect to ECMWF (European Centre for Medium-Range Weather Forecasts) and are likely due to deficiencies of the ECMWF analysis data. MIPAS and MLS stratospheric volume mixing ratios (vmr) of H2O are biased within ±1 ppmv, with indication of oscillations between 146 and 26 hPa in the MLS dataset. Tropical upper tropospheric values of relative humidity over ice measured by the two instruments differ by ±20% in the pressure range ~146 to 68 hPa. These differences are mainly caused by the MLS temperature biases. Ozone mixing ratios agree within 0.5 ppmv (10 to 20%) between 68 and 14 hPa. At pressures smaller than 10 hPa, MIPAS O3 vmr are higher than MLS by an average of 0.5 ppmv (10%). General agreement between MIPAS and MLS HNO3 is within the range of −1.0 (−10%) to 1.0 ppbv (20%). MIPAS HNO3 is 1.0 ppbv (10%) higher compared to MLS between 46 hPa and 10 hPa over the Northern Hemisphere. Over the tropics at 31.6 hPa MLS shows a low bias of more than 1 ppbv (>50%). In general, MIPAS and MLS N2O vmr agree within 20 to 40 ppbv (20 to 40%). Differences in the range between 100 to 21 hPa are attributed to a known 20% positive bias in MIPAS N2O data.
  •  
4.
  •  
5.
  •  
6.
  • Milz, Mathias, et al. (författare)
  • Validation of water vapour profiles (version 13) retrieved by the IMK/IAA scientific retrieval processor based on full resolution spectra measured by MIPAS on board Envisat
  • 2009
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 2:2, s. 379-399
  • Tidskriftsartikel (refereegranskat)abstract
    • Vertical profiles of stratospheric water vapour measured by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) with the full resolution mode between September 2002 and March 2004 and retrieved with the IMK/IAA scientific retrieval processor were compared to a number of independent measurements in order to estimate the bias and to validate the existing precision estimates of the MIPAS data. The estimated precision for MIPAS is 5 to 10% in the stratosphere, depending on altitude, latitude, and season. The independent instruments were: the Halogen Occultation Experiment (HALOE), the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS), the Improved Limb Atmospheric Spectrometer-II (ILAS-II), the Polar Ozone and Aerosol Measurement (POAM III) instrument, the Middle Atmospheric Water Vapour Radiometer (MIAWARA), the Michelson Interferometer for Passive Atmospheric Sounding, balloon-borne version (MIPAS-B), the Airborne Microwave Stratospheric Observing System(AMSOS), the Fluorescent Stratospheric Hygrometer for Balloon (FLASH-B), the NOAA frostpoint hygrometer, and the Fast In Situ Hygrometer (FISH). For the in-situ measurements and the ground based, air- and balloon borne remote sensing instruments, the measurements are restricted to central and northern Europe. The comparisons to satellite-borne instruments are predominantly at mid- to high latitudes on both hemispheres. In the stratosphere there is no clear indicationof a bias in MIPAS data, because the independent measurements in some cases are drier and in some cases are moister than the MIPAS measurements. Compared to the infrared measurements of MIPAS, measurements in the ultraviolet and visible have a tendency to be high, whereas microwave measurements have a tendency to be low. Theresults of chi2-based precision validation are somewhat controversial among the comparison estimates. However, for comparison instruments whose error budget also includes errors due to uncertainties in spectrally interfering species and where good coincidences were found, the chi2 values found are in the expected range or even below. This suggests that there is no evidence of systematically underestimated MIPAS random errors.
  •  
7.
  • Carleer, M. R., et al. (författare)
  • Validation of water vapour profiles from the Atmospheric Chemistry Experiment (ACE)
  • 2008
  • Ingår i: Atmospheric Chemistry and Physics Discussion: An Interactive Open Access Journal of the European Geosciences Union. ; 8:2, s. 4499-4559
  • Tidskriftsartikel (refereegranskat)abstract
    • The Atmospheric Chemistry Experiment (ACE) mission was launched in August 2003 to sound the atmosphere by solar occultation. Water vapour (H2O), one of the most important molecules for climate and atmospheric chemistry, is one of the key species provided by the two principal instruments, the infrared Fourier Transform Spectrometer (ACE-FTS) and the MAESTRO UV-Visible spectrometer (ACE-MAESTRO). The first instrument performs measurements on several lines in the 1362–2137 cm−1 range, from which vertically resolved H2O concentration profiles are retrieved, from 7 to 90 km altitude. ACE-MAESTRO measures profiles using the water absorption band in the near infrared part of the spectrum at 926.0–969.7 nm. This paper presents a comprehensive validation of the ACE-FTS profiles. We have compared the H2O volume mixing ratio profiles with space-borne (SAGE II, HALOE, POAM III, MIPAS, SMR) observations and measurements from balloon-borne frostpoint hygrometers and a ground based lidar. We show that the ACE-FTS measurements provide H2O profiles with small retrieval uncertainties in the stratosphere (better than 5% from 15 to 70 km, gradually increasing above). The situation is unclear in the upper troposphere, due mainly to the high variability of the water vapour volume mixing ratio in this region. A new water vapour data product from the ACE-MAESTRO (Measurement of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation) is also presented and initial comparisons with ACE-FTS are discussed.
  •  
8.
  • Clerbaux, C., et al. (författare)
  • CO measurements from the ACE-FTS satellite instrument: data analysis and validation using ground-based, airborne and spaceborne observations
  • 2008
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 8, s. 2569-2594
  • Tidskriftsartikel (refereegranskat)abstract
    • The Atmospheric Chemistry Experiment (ACE) mission was launched in August 2003 to sound the atmosphere by solar occultation. Carbon monoxide (CO), a good tracer of pollution plumes and atmospheric dynamics, is one of the key species provided by the primary instrument, the ACE-Fourier Transform Spectrometer (ACE-FTS). This instrument performs measurements in both the CO 1-0 and 2-0 ro-vibrational bands, from which vertically resolved CO concentration profiles are retrieved, from the mid-troposphere to the thermosphere. This paper presents an updated description of the ACE-FTS version 2.2 CO data product, along with a comprehensive validation of these profiles using available observations (February 2004 to December 2006). We have compared the CO partial columns with ground-based measurements using Fourier transform infrared spectroscopy and millimeter wave radiometry, and the volume mixing ratio profiles with airborne (both high-altitude balloon flight and airplane) observations. CO satellite observations provided by nadir-looking instruments (MOPITT and TES) as well as limb-viewing remote sensors (MIPAS, SMR and MLS) were also compared with the ACE-FTS CO products. We show that the ACE-FTS measurements provide CO profiles with small retrieval errors (better than 5% from the upper troposphere to 40 km, and better than 10% above). These observations agree well with the correlative measurements, considering the rather loose coincidence criteria in some cases. Based on the validation exercise we assess the following uncertainties to the ACE-FTS measurement data: better than 15% in the upper troposphere (8–12 km), than 30% in the lower stratosphere (12–30 km), and than 25% from 30 to 100 km.
  •  
9.
  • Kerzenmacher, T., et al. (författare)
  • Validation of NO2 and NO from the Atmospheric Chemistry Experiment (ACE)
  • 2008
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 8:19, s. 5801--5841-
  • Tidskriftsartikel (refereegranskat)abstract
    • Vertical profiles of NO2 and NO have been obtained from solar occultation measurements by the Atmospheric Chemistry Experiment (ACE), using an infrared Fourier Transform Spectrometer (ACE-FTS) and (for NO2) an ultraviolet-visible-near-infrared spectrometer, MAESTRO (Measurement of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation). In this paper, the quality of the ACE-FTS version 2.2 NO2 and NO and the MAESTRO version 1.2 NO2 data are assessed using other solar occultation measurements (HALOE, SAGE II, SAGE III, POAM III, SCIAMACHY), stellar occultation measurements (GOMOS), limb measurements (MIPAS, OSIRIS), nadir measurements (SCIAMACHY), balloon-borne measurements (SPIRALE, SAOZ) and ground-based measurements (UV-VIS, FTIR). Time differences between the comparison measurements were reduced using either a tight coincidence criterion, or where possible, chemical box models. ACE-FTS NO2 and NO and the MAESTRO NO2 are generally consistent with the correlative data. The ACE-FTS and MAESTRO NO2 volume mixing ratio (VMR) profiles agree with the profiles from other satellite data sets to within about 20% between 25 and 40 km, with the exception of MIPAS ESA (for ACE-FTS) and SAGE II (for ACE-FTS (sunrise) and MAESTRO) and suggest a negative bias between 23 and 40 km of about 10%. MAESTRO reports larger VMR values than the ACE-FTS. In comparisons with HALOE, ACE-FTS NO VMRs typically (on average) agree to ±8% from 22 to 64 km and to +10% from 93 to 105 km, with maxima of 21% and 36%, respectively. Partial column comparisons for NO2 show that there is quite good agreement between the ACE instruments and the FTIRs, with a mean difference of +7.3% for ACE-FTS and +12.8% for MAESTRO.
  •  
10.
  • Stiller, G.P., et al. (författare)
  • Global distribution of mean age of stratospheric air from MIPAS SF6 measurements
  • 2008
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 8:3, s. 677-695
  • Tidskriftsartikel (refereegranskat)abstract
    • Global distributions of profiles of sulphur hexafluoride (SF6) have been retrieved from limb emission spectra recorded by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on Envisat covering the period September 2002 to March 2004. Individual SF6 profiles have a precision of 0.5 pptv below 25 km altitude and a vertical resolution of 4–6 km up to 35 km altitude. These data have been validated versus in situ observations obtained during balloon flights of a cryogenic whole-air sampler. For the tropical troposphere a trend of 0.230±0.008 pptv/yr has been derived from the MIPAS data, which is in excellent agreement with the trend from ground-based flask and in situ measurements from the National Oceanic and Atmospheric Administration Earth System Research Laboratory, Global Monitoring Division. For the data set currently available, based on at least three days of data per month, monthly 5° latitude mean values have a 1σ standard error of 1%. From the global SF6 distributions, global daily and monthly distributions of the apparent mean age of air are inferred by application of the tropical tropospheric trend derived from MIPAS data. The inferred mean ages are provided for the full globe up to 90° N/S, and have a 1σ standard error of 0.25 yr. They range between 0 (near the tropical tropopause) and 7 years (except for situations of mesospheric intrusions) and agree well with earlier observations. The seasonal variation of the mean age of stratospheric air indicates episodes of severe intrusion of mesospheric air during each Northern and Southern polar winter observed, long-lasting remnants of old, subsided polar winter air over the spring and summer poles, and a rather short period of mixing with midlatitude air and/or upward transport during fall in October/November (NH) and April/May (SH), respectively, with small latitudinal gradients, immediately before the new polar vortex starts to form. The mean age distributions further confirm that SF6 is destroyed in the mesosphere to a considerable degree. Model calculations with the Karlsruhe simulation model of the middle atmosphere (KASIMA) chemical transport model agree well with observed global distributions of the mean age only if the SF6 sink reactions in the mesosphere are included in the model.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 20

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy