SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tvingstedt Kristofer) srt2:(2007)"

Sökning: WFRF:(Tvingstedt Kristofer) > (2007)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Tvingstedt, Kristofer, 1976-, et al. (författare)
  • Folded reflective tandem polymer solar cell doubles efficiency
  • 2007
  • Ingår i: Applied Physics Letters. - : AIP Publishing. - 0003-6951 .- 1077-3118. ; 91:12, s. 123514-
  • Tidskriftsartikel (refereegranskat)abstract
    • Conjugated polymers are promising materials for the production of inexpensive and flexible photovoltaic cells. Organic materials display tunable optical absorption within a large spectral range. This enables the construction of organic tandem photovoltaic cells. The authors here demonstrate a reflective tandem cell where single cells are reflecting the nonabsorbed light upon another adjacent cell. By folding two planar but spectrally different cells toward each other, spectral broadening and light trapping are combined to give an enhancement of power conversion efficiency of a factor of 1.8±0.3.
  •  
3.
  • Tvingstedt, Kristofer, 1976- (författare)
  • Light Trapping and Alternative Electrodes for Organic Photovoltaic Devices
  • 2007
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Organic materials, such as conjugated polymers, have emerged as a promising alternative for the production of inexpensive and flexible photovoltaic cells. As conjugated polymers are soluble, liquid based printing techniques enable production on large scale to a price much lower than that for inorganic based solar cells. Present day state of the art conjugated polymer photovoltaic cells are comprised by blends of a semiconducting polymer and a soluble derivative of fullerene molecules. Such bulk heterojunction solar cells now show power conversion efficiencies of up to 4-6%. The quantum efficiency of thin film organic solar cells is however still limited by several processes, of which the most prominent limitations are the comparatively low mobility and the high level of charge recombination. Hence organic cells do not yet perform as well as their more expensive inorganic counterparts. In order to overcome this present drawback of conjugated polymer photovoltaics, efforts are continuously devoted to developing materials or devices with increased absorption or with better charge carrier transporting properties. The latter can be facilitated by increasing the mobility of the pure material or by introducing beneficial morphology to prevent carrier recombination. Minimizing the active layer film thickness is an alternative route to collect more of the generated free charge carriers. However, a minimum film thickness is always required for sufficient photon absorption.A further limitation for low cost large scale production has been the dependence on expensive transparent electrodes such as indium tin oxide. The development of cheaper electrodes compatible with fast processing is therefore of high importance.The primary aim of this work has been to increase the absorption in solar cells made from thin films of organic materials. Device construction, deploying new geometries, and evaluation of different methods to provide for light trapping and photon recycling have been strived for. Different routes to construct and incorporate light trapping structures that enable higher photon absorption in a thinner film are presented. By recycling the reflected photons and enhancing the optical path length within a thinner cell, the absorption rate, as well as the collection of more charge carriers, is provided for. Attempts have been performed by utilizing a range of different structures with feature sizes ranging from nanometers up to centimeters. Surface plasmons, Lambertian scatterers, micro lenses, tandem cells as well as larger folded cell structures have been evaluated. Naturally, some of these methods have turned out to be more successful than others. From this work it can nevertheless be concluded that proper light trapping, in thin films of organic materials for photovoltaic energy conversion, is a technique capable of improving the cell performance.In addition to the study of light trapping, two new alternative electrodes for polymer photovoltaic devices are suggested and evaluated.
  •  
4.
  • Tvingstedt, Kristofer, et al. (författare)
  • Surface plasmon increased absorption in polymer photovoltaic cells
  • 2007
  • Ingår i: Applied Physics Letters. - : AIP Publishing. - 0003-6951 .- 1077-3118. ; 91:11, s. 113514 -
  • Tidskriftsartikel (refereegranskat)abstract
    • The authors demonstrate the triggering of surface plasmons at the interface of a metal grating and a photovoltaic bulk heterojunction blend of alternating polyfluorenes and a fullerene derivative. An increased absorption originating from surface plasmon resonances is confirmed by experimental reflection studies and theoretical modeling. Plasmonic resonances are further confirmed to influence the extracted photocurrent from devices. More current is generated at the wavelength position of the plasmon resonance peak. High conductivity polymer electrodes are used to build inverted sandwich structures with top anode and bottom metal grating, facilitating for triggering and characterization of the surface plasmon effects.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy