SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dupuy E.) "

Sökning: WFRF:(Dupuy E.)

  • Resultat 11-20 av 39
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
11.
  • Barret, B., et al. (författare)
  • Intercomparisons of trace gases profiles from the Odin/SMR and Aura/MLS limb sounders
  • 2006
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 111:D21
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper presents the intercomparison of O(3), HNO(3), ClO, N(2)O and CO profiles measured by the two spaceborne microwave instruments MLS ( Microwave Limb Sounder) and SMR ( Submillimetre Radiometer) on board the Aura and Odin satellites, respectively. We compared version 1.5 level 2 data from MLS with level 2 data produced by the French data processor version 222 and 225 and by the Swedish data processor version 2.0 for several days in September 2004 and in March 2005. For the five gases studied, an overall good agreement is found between both instruments. Most of the observed discrepancies between SMR and MLS are consistent with results from other intercomparison studies involving MLS or SMR. O(3) profiles retrieved from the SMR 501.8 GHz band are noisier than MLS profiles but mean biases between both instruments do not exceed 10%. SMR HNO(3) profiles are biased low relative to MLS's by similar to 30% above the profile peak. In the lower stratosphere, MLS ClO profiles are biased low by up to 0.3 ppbv relative to coincident SMR profiles, except in the Southern Hemisphere polar vortex in the presence of chlorine activation. N(2)O profiles from both instruments are in very good agreement with mean biases not exceeding 15%. Finally, the intercomparison between SMR and MLS CO profiles has shown a good agreement from the middle stratosphere to the middle mesosphere in spite of strong oscillations in the MLS profiles. In the upper mesosphere, MLS CO concentrations are biased high relative to SMR while negative values in the MLS retrievals are responsible for a negative bias in the tropics around 30 hPa.
  •  
12.
  • Berthet, G., et al. (författare)
  • Nighttime chlorine monoxide observations by the Odin satellite and implications for the ClO/Cl2O2 equilibrium
  • 2005
  • Ingår i: Geophysical Research Letters. - 1944-8007 .- 0094-8276. ; 32:11, s. 1-5
  • Tidskriftsartikel (refereegranskat)abstract
    • We use measurements of chlorine monoxide (ClO) by the SMR instrument onboard the Odin satellite to study the nighttime thermal equilibrium between ClO and its dimer Cl2O2. Observations performed in the polar vortex during the 2002-2003 Arctic winter showed enhanced amounts of nighttime ClO over a wide range of stratospheric temperatures (185
  •  
13.
  • Dupuy, E., et al. (författare)
  • Strato-mesospheric Measurements of Carbon Monoxide with the Odin Sub-millimetre Radiometer: Retrieval and First Results
  • 2004
  • Ingår i: Geophysical Research Letters. - 1944-8007 .- 0094-8276. ; 31:20
  • Tidskriftsartikel (refereegranskat)abstract
    • The Sub-Millimetre Radiometer (SMR) aboard the Odin satellite has been measuring vertical profiles of atmospheric trace gases since August 2001. We present the inversion methodology developed for CO measurements and the first retrieval results. CO can be retrieved from a single scan measurement throughout the middle atmosphere, with a typical resolution of similar to3 km and a relative error of similar to10% to similar to25%. Retrieval results are evaluated through comparison with data from the Whole Atmosphere Community Climate Model (WACCM) and observations of the Improved Stratospheric and Mesospheric Sounder (ISAMS) on board the Upper Atmospheric Research Satellite (UARS). Considering the large natural variability of CO, the SMR retrievals give good confirmation of the WACCM results, with an overall agreement within a factor of 2. ISAMS abundances are higher than SMR mixing ratios by a factor of 5-10 above 0.5 hPa from similar to80degreesS to similar to50degreesN.
  •  
14.
  • El Amraoui, L., et al. (författare)
  • Assimilation of Odin/SMR and O3 and N2O Measurements in a Three-dimensional Chemistry Transport Model
  • 2004
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 109:D22, s. 1-9
  • Tidskriftsartikel (refereegranskat)abstract
    • A method for assimilating observations of long-lived species such as ozone (O-3) and nitrous oxide (N2O) in a three-dimensional chemistry transport model (3D-CTM) is described. The model is forced by the temperature and wind analyses from the European Centre for Medium-Range Weather Forecasts (ECMWF). The O-3 and N2O fields used in this study are obtained from the Sub-Millimeter Radiometer (SMR) aboard the Odin satellite. The assimilation technique used is the sequential statistical interpolation approach. The parametrization of the error covariance matrix of the model forecast field is described. A sensitivity study of the system parameters is done in terms of the OMF (observation minus forecast) vector also called "innovation'' vector and in terms of the chi(2) (chi-square) test. The effect of the correlation distances is critical for the assimilated field. The RMS ( root mean square) of the OMF for the correlation distances is minimal for values of 1500 km in the meridional direction and 500 km in the zonal direction for both O-3 and N2O. The treatment of the meridional distance as a function of latitude does not reveal an important improvement. The chi(2) diagnostic shows that the asymptotic value of the model error ( the model error of saturation) is optimal for the value of 12.5% for O-3 and 18% for N2O. We demonstrate the applicability of the developed assimilation method for the Odin/SMR data. We also present first results of the assimilation of Odin/SMR ozone and nitrous oxide for the period from 22 December 2001 to 17 January 2002.
  •  
15.
  • Goobar, Ariel, et al. (författare)
  • THE RISE OF SN 2014J IN THE NEARBY GALAXY M82
  • 2014
  • Ingår i: Astrophysical Journal Letters. - 2041-8205 .- 2041-8213. ; 784:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the discovery of SN 2014J in the nearby galaxy M82. Given its proximity, it offers the best opportunity to date to study a thermonuclear supernova (SN) over a wide range of the electromagnetic spectrum. Optical, near-IR, and mid-IR observations on the rising light curve, orchestrated by the intermediate Palomar Transient Factory, show that SN 2014J is a spectroscopically normal Type Ia supernova (SN Ia), albeit exhibiting high-velocity features in its spectrum and heavily reddened by dust in the host galaxy. Our earliest detections start just hours after the fitted time of explosion. We use high-resolution optical spectroscopy to analyze the dense intervening material and do not detect any evolution in the resolved absorption features during the light curve rise. Similar to other highly reddened SNe Ia, a low value of total-to-selective extinction, R-V less than or similar to 2, provides the best match to our observations. We also study pre-explosion optical and near-IR images from Hubble Space Telescope with special emphasis on the sources nearest to the SN location.
  •  
16.
  • Kerzenmacher, T., et al. (författare)
  • Validation of NO2 and NO from the Atmospheric Chemistry Experiment (ACE)
  • 2008
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 8:19, s. 5801--5841-
  • Tidskriftsartikel (refereegranskat)abstract
    • Vertical profiles of NO2 and NO have been obtained from solar occultation measurements by the Atmospheric Chemistry Experiment (ACE), using an infrared Fourier Transform Spectrometer (ACE-FTS) and (for NO2) an ultraviolet-visible-near-infrared spectrometer, MAESTRO (Measurement of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation). In this paper, the quality of the ACE-FTS version 2.2 NO2 and NO and the MAESTRO version 1.2 NO2 data are assessed using other solar occultation measurements (HALOE, SAGE II, SAGE III, POAM III, SCIAMACHY), stellar occultation measurements (GOMOS), limb measurements (MIPAS, OSIRIS), nadir measurements (SCIAMACHY), balloon-borne measurements (SPIRALE, SAOZ) and ground-based measurements (UV-VIS, FTIR). Time differences between the comparison measurements were reduced using either a tight coincidence criterion, or where possible, chemical box models. ACE-FTS NO2 and NO and the MAESTRO NO2 are generally consistent with the correlative data. The ACE-FTS and MAESTRO NO2 volume mixing ratio (VMR) profiles agree with the profiles from other satellite data sets to within about 20% between 25 and 40 km, with the exception of MIPAS ESA (for ACE-FTS) and SAGE II (for ACE-FTS (sunrise) and MAESTRO) and suggest a negative bias between 23 and 40 km of about 10%. MAESTRO reports larger VMR values than the ACE-FTS. In comparisons with HALOE, ACE-FTS NO VMRs typically (on average) agree to ±8% from 22 to 64 km and to +10% from 93 to 105 km, with maxima of 21% and 36%, respectively. Partial column comparisons for NO2 show that there is quite good agreement between the ACE instruments and the FTIRs, with a mean difference of +7.3% for ACE-FTS and +12.8% for MAESTRO.
  •  
17.
  •  
18.
  •  
19.
  •  
20.
  • Urban, Joachim, 1964, et al. (författare)
  • Odin/SMR Limb Observations of Stratospheric Trace Gases: Level 2 Processing of ClO, N2O, O3, and HNO3
  • 2005
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 110:D14, s. 1-20
  • Tidskriftsartikel (refereegranskat)abstract
    • The Sub-Millimetre Radiometer (SMR) on board the Odin satellite, launched on 20 February 2001, observes key species with respect to stratospheric chemistry and dynamics such as O-3, ClO, N2O, and HNO3 using two bands centered at 501.8 and 544.6 GHz. We present the adopted methodology for level 2 processing and the achieved in-orbit measurement capabilities of the SMR radiometer for these species in terms of altitude range, altitude resolution, and measurement precision. The characteristics of the relevant level 2 data versions, namely version 1.2 of the operational processor as well as versions 222 and 223 of the reference code, are discussed and differences are evaluated. An analysis of systematic retrieval errors, resulting from spectroscopic and instrumental uncertainties, is also presented.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 11-20 av 39

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy