SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Brenning Nils) "

Sökning: WFRF:(Brenning Nils)

  • Resultat 71-80 av 138
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
71.
  • Gunell, Herbert, et al. (författare)
  • Experiments on anomalous electron currents to a positive probe in a magnetized plasma stream
  • 2000
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 27:2, s. 161-164
  • Tidskriftsartikel (refereegranskat)abstract
    • The first laboratory experiments are reported of anomalously high currents drawn by an electron collecting probe in a magnetized plasma stream. The currents exceed the theoretical values by Parker and Murphy [Parker and Murphy, 1967] by more than a factor of three. Measurements of the potential pattern around the probe indicate that the enhanced currents are possible because electrons E x B-drift into a local field-aligned current channel.
  •  
72.
  • Gunell, H., et al. (författare)
  • Numerical experiments on plasmoids entering a transverse magnetic field
  • 2009
  • Ingår i: Physics of Plasmas. - : AIP Publishing. - 1070-664X .- 1089-7674. ; 16:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Plasma from the Earth's magnetosheath has previously been observed inside the magnetosphere. Inhomogeneities in the magnetosheath plasma, here called plasmoids, can impact the magnetopause and doing so set up a polarizing field that allows it to penetrate the magnetopause and enter the magnetosphere. A set of simulations of plasmoids with different dimensions is presented in this paper. For plasmoids that are longer than those previously published, waves propagating upstream from the barrier are found. It is also found that the penetration process causes the part of the plasmoid that is upstream of the barrier to rotate. The role of plasmoid width and cross sectional shape in penetration is studied, and for plasmoids that are less than half an ion gyroradius wide, the plasmoid is compressed to obtain a vertically oriented elliptical cross section, regardless of the initial shape. When the initial plasmoid width exceeds the ion gyroradius, the plasmoid still penetrates through a mechanism involving a potential that propagates upstream from the magnetic barrier.
  •  
73.
  • Gunell, H., et al. (författare)
  • Simulations of a plasmoid penetrating a magnetic barrier
  • 2008
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 0741-3335 .- 1361-6587. ; 50:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Plasma structures, here typified by the term 'plasmoids', in the solar wind impacting on the magnetopause, i. e. the boundary between the solar wind and the Earth's magnetosphere, can penetrate this boundary and be injected into the magnetosphere. This can happen either by expulsion of the magnetic field from the structure and subsequent diffusion of the magnetic field into the structure or by the formation of a polarization electric field that lets the plasma structure E x B- drift into the earth's magnetic field. In both cases a collisionless resistivity is required at some stage of the process. While magnetic expulsion requires electromagnetic models for its description, polarization can be modelled electrostatically and both processes can be, and have been, studied in laboratory experiments. We present three-dimensional electrostatic particle-in-cell simulations that reproduce large-amplitude waves, in the lower-hybrid range, that have been observed in laboratory experiments. Lower-hybrid waves have also been seen at the magnetopause of the earth. We consider the implications for spacecraft-based studies of magnetopause penetration, and suggest that the search for penetrating plasma structures should emphasize cases in which the interplanetary magnetic field is oriented northwards, as this configuration is less likely for reconnection. The application of theoretical predictions to the magnetopause environment shows that a plasma structure penetrating via polarization needs to be small, i. e. less than 10-100 km wide for typical parameters, and that wave processes at the magnetopause are needed to create such small structures. A larger structure can penetrate by means of magnetic expulsion.
  •  
74.
  • Gunell, H., et al. (författare)
  • Waves in high-speed plasmoids in the magnetosheath and at the magnetopause
  • 2014
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 32:8, s. 991-1009
  • Tidskriftsartikel (refereegranskat)abstract
    • Plasmoids, defined here as plasma entities with a higher anti-sunward velocity component than the surrounding plasma, have been observed in the magnetosheath in recent years. During the month of March 2007 the Cluster spacecraft crossed the magnetopause near the subsolar point 13 times. Plasmoids with larger velocities than the surrounding magnetosheath were found on seven of these 13 occasions. The plasmoids approach the magnetopause and interact with it. Both whistler mode waves and waves in the lower hybrid frequency range appear in these plasmoids, and the energy density of the waves inside the plasmoids is higher than the average wave energy density in the magnetosheath. When the spacecraft are in the magnetosphere, Alfvenic waves are observed. Cold ions of ionospheric origin are seen in connection with these waves, when the wave electric and magnetic fields combine with the Earth's dc magnetic field to yield an E x B/B-2 drift speed that is large enough to give the ions energies above the detection threshold.
  •  
75.
  • Gunnarsson, Rickard (författare)
  • Controlling the growth of nanoparticles produced in a high power pulsed plasma
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Nanotechnology can profoundly benefit our health, environment and everyday life. In order to make this a reality, both technological and theoretical advancements of the nanomaterial synthesis methods are needed. A nanoparticle is one of the fundamental building blocks in nanotechnology and this thesis describes the control of the nucleation, growth and oxidation of titanium particles produced in a pulsed plasma. It will be shown that by controlling the process conditions both the composition (oxidationstate) and size of the particles can be varied. The experimental results are supported by theoretical modeling.If processing conditions are chosen which give a high temperature in the nanoparticle growth environment, oxygen was found to be necessary in order to nucleate the nanoparticles. The two reasons for this are 1: the lower vapor pressure of a titanium oxide cluster compared to a titanium cluster, meaning a lower probability of evaporation, and 2: the ability of a cluster to cool down by ejecting an oxygen atom when an oxygen molecule condenses on its surface. When the oxygen gas flow was slightly increased, the nanoparticle yield and oxidation state increased. A further increase caused a decrease in particle yield which is attributed to a slight oxidation ofthe cathode. By varying the oxygen flow, it was possible to control the oxidation state of the nanoparticles without fully oxidizing the cathode. Pure titanium nanoparticles could not be produced in a high vacuum system because oxygen containing gases such as residual water vapour have a profound influence on nanoparticle yield and composition. In an ultrahigh vacuum system titanium nanoparticles without significantoxygen contamination were produced by reducing the temperature of the growth environment and increasing the pressure of an argon-helium gas mixture within whichthe nanoparticles grew. The dimer formation rate necessary for this is only achievable at higher pressures. After a dimer has formed, it needs to grow by colliding with a titanium atom followed by cooling by collisions with multiple buffer gas atoms. The condensation event heats up the cluster to a temperature much higher than the gas temperature, where it is during a short time susceptible to evaporation. When the clusters’ internal energy has decreased by collisions with the gas to less than the energy required to evaporate a titanium atom, it is temporarily stable until the next condensation event occurs. The temperature difference by which the cluster has to cool down before it is temporarily stable is exactly as many kelvins as the gas temperature.The addition of helium was found to decrease the temperature of the gas, making it possible for nanoparticles of pure titanium to grow. The process window where this is possible was determined and the results presented opens up new possibilities to synthesize particles with a controlled contamination level and deposition rate.The size of the nanoparticles has been controlled by three means. The first is to change the electrical potential around the growth zone, which allows for size (diameter) control in the order of 25 to 75 nm without influencing the oxygen content of the particles. The second means is by increasing the pressure which decreases the ambipolar diffusion rate of the ions resulting in a higher growth material density. By doing this, the particle size can be increased from 50 to 250 nm, however the oxygen content also increases with increasing pressure when this is done in a high vacuum system. The last means of size control was by adding a helium flow to the process where higher flows resulted in smaller nanoparticle sizes.When changing the pressure in high vacuum, the morphology of the nanoparticles could be controlled. At low pressures, highly faceted near spherical particles were produced. Increasing the pressure caused the formation of cubic particles which appear to ‘fracture’ at higher pressures. At the highest pressure investigated, the particles became poly-crystalline with a cauliflower shape and this morphology was attributed to a lowad atom mobility.The ability to control the size, morphology and composition of the nanoparticles determines the success of applying the process to manufacture devices. In related work presented in this thesis it is shown that 150-200 nm molybdenum particles with cauliflower morphology were found to scatter light in which made them useful in photovoltaic applications, and the size of titanium dioxide nanoparticles were found to influence the selectivity of graphene based gas sensors.
  •  
76.
  • Gunnarsson, Rickard, et al. (författare)
  • Nucleation of titanium nanoparticles in an oxygen-starved environment. I : experiments
  • 2018
  • Ingår i: Journal of Physics D. - : Institute of Physics Publishing (IOPP). - 0022-3727 .- 1361-6463. ; 51:45
  • Tidskriftsartikel (refereegranskat)abstract
    • A constant supply of oxygen has been assumed to be necessary for the growth of titanium nanoparticles by sputtering. This oxygen supply can arise from a high background pressure in the vacuum system or from a purposely supplied gas. The supply of oxygen makes it difficult to grow metallic nanoparticles of titanium and can cause process problems by reacting with the target. We here report that growth of titanium nanoparticles in the metallic hexagonal titanium (alpha Ti) phase is possible using a pulsed hollow cathode sputter plasma and adding a high partial pressure of helium to the process instead of trace amounts of oxygen. The helium cools the process gas in which the nanoparticles nucleate. This is important both for the first dimer formation and the continued growth to a thermodynamically stable size. The parameter region, inside which the synthesis of nanoparticles is possible, is mapped out experimentally and the theory of the physical processes behind this process window is outlined. A pressure limit below which no nanoparticles were produced was found at 200 Pa, and could be attributed to a low dimer formation rate, mainly caused by a more rapid dilution of the growth material. Nanoparticle production also disappeared at argon gas flows above 25 sccm. In this case, the main reason was identified as a gas temperature increase within the nucleation zone, giving a too high evaporation rate from nanoparticles (clusters) in the stage of growth from dimers to stable nuclei. These two mechanisms are in depth explored in a companion paper. A process stability limit was also found at low argon gas partial pressures, and could be attributed to a transition from a hollow cathode discharge to a glow discharge.
  •  
77.
  • Gunnarsson, Rickard, et al. (författare)
  • Nucleation of titanium nanoparticles in an oxygen-starved environment. II : theory
  • 2018
  • Ingår i: Journal of Physics D. - : Institute of Physics Publishing (IOPP). - 0022-3727 .- 1361-6463. ; 51:45
  • Tidskriftsartikel (refereegranskat)abstract
    • The nucleation and growth of pure titanium nanoparticles in a low-pressure sputter plasma has been believed to be essentially impossible. The addition of impurities, such as oxygen or water, facilitates this and allows the growth of nanoparticles. However, it seems that this route requires such high oxygen densities that metallic nanoparticles in the hexagonal alpha Ti-phase cannot be synthesized. Here we present a model which explains results for the nucleation and growth of titanium nanoparticles in the absent of reactive impurities. In these experiments, a high partial pressure of helium gas was added which increased the cooling rate of the process gas in the region where nucleation occurred. This is important for two reasons. First, a reduced gas temperature enhances Ti-2 dimer formation mainly because a lower gas temperature gives a higher gas density, which reduces the dilution of the Ti vapor through diffusion. The same effect can be achieved by increasing the gas pressure. Second, a reduced gas temperature has a 'more than exponential' effect in lowering the rate of atom evaporation from the nanoparticles during their growth from a dimer to size where they are thermodynamically stable, r*. We show that this early stage evaporation is not possible to model as a thermodynamical equilibrium. Instead, the single-event nature of the evaporation process has to be considered. This leads, counter intuitively, to an evaporation probability from nanoparticles that is exactly zero below a critical nanoparticle temperature that is size-dependent. Together, the mechanisms described above explain two experimentally found limits for nucleation in an oxygen-free environment. First, there is a lower limit to the pressure for dimer formation. Second, there is an upper limit to the gas temperature above which evaporation makes the further growth to stable nuclei impossible.
  •  
78.
  • Gunnarsson, Rickard, et al. (författare)
  • The influence of pressure and gas flow on size and morphology of titanium oxide nanoparticles synthesized by hollow cathode sputtering
  • 2016
  • Ingår i: Journal of Applied Physics. - : American Institute of Physics (AIP). - 0021-8979 .- 1089-7550. ; 120:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Titanium oxide nanoparticles have been synthesized via sputtering of a hollow cathode in an argon atmosphere. The influence of pressure and gas flow has been studied. Changing the pressure affects the nanoparticle size, increasing approximately proportional to the pressure squared. The influence of gas flow is dependent on the pressure. In the low pressure regime (107 <= p <= 143 Pa), the nanoparticle size decreases with increasing gas flow; however, at high pressure (p = 215 Pa), the trend is reversed. For low pressures and high gas flows, it was necessary to add oxygen for the particles to nucleate. There is also a morphological transition of the nanoparticle shape that is dependent on the pressure. Shapes such as faceted, cubic, and cauliflower can be obtained. Published by AIP Publishing.
  •  
79.
  • Hajihoseini, Hamidreza, et al. (författare)
  • Sideways deposition rate and ionized flux fraction in dc and high power impulse magnetron sputtering
  • 2020
  • Ingår i: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films. - : American Vacuum Society. - 0734-2101 .- 1520-8559. ; 38:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The sideways (radial) deposition rate and ionized flux fraction in a high power impulse magnetron sputtering (HiPIMS) discharge are studied and compared to a dc magnetron sputtering (dcMS) discharge, while the magnetic field strength | B | and degree of balancing are varied. A significant deposition of the film forming material perpendicular to the target surface is observed for both sputter techniques. This sideways deposition decreases with increasing axial distance from the target surface. The sideways deposition rate is always the highest in dc operation, while it is lower for HiPIMS operation. The magnetic field strength has a strong influence on the sideways deposition rate in HiPIMS but not in dcMS. Furthermore, in HiPIMS operation, the radial ion deposition rate is always at least as large as the axial ion deposition rate and often around two times higher. Thus, there are a significantly higher number of ions traveling radially in the HiPIMS discharge. A comparison of the total radial as well as axial fluxes across the entire investigated plasma volume between the target and the substrate position allows for revised estimates of radial over axial flux fractions for different magnetic field configurations. It is here found that the relative radial flux of the film forming material is greater in dcMS compared to HiPIMS for almost all cases investigated. It is therefore concluded that the commonly reported reduction of the (axial) deposition rate in HiPIMS compared to dcMS does not seem to be linked with an increase in sideways material transport in HiPIMS.
  •  
80.
  • Hajihoseini, H., et al. (författare)
  • Target ion and neutral spread in high power impulse magnetron sputtering
  • 2023
  • Ingår i: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films. - : American Vacuum Society. - 0734-2101 .- 1520-8559. ; 41:1
  • Tidskriftsartikel (refereegranskat)abstract
    • In magnetron sputtering, only a fraction of the sputtered target material leaving the ionization region is directed toward the substrate. This fraction may be different for ions and neutrals of the target material as the neutrals and ions can exhibit a different spread as they travel from the target surface toward the substrate. This difference can be significant in high power impulse magnetron sputtering (HiPIMS) where a substantial fraction of the sputtered material is known to be ionized. Geometrical factors or transport parameters that account for the loss of produced film-forming species to the chamber walls are needed for experimental characterization and modeling of the magnetron sputtering discharge. Here, we experimentally determine transport parameters for ions and neutral atoms in a HiPIMS discharge with a titanium target for various magnet configurations. Transport parameters are determined to a typical substrate, with the same diameter (100 mm) as the cathode target, and located at a distance 70 mm from the target surface. As the magnet configuration and/or the discharge current are changed, the transport parameter for neutral atoms xi(tn) remains roughly the same, while transport parameters for ions xi(ti) vary greatly. Furthermore, the relative ion-to-neutral transport factors, xi(ti)/xi(tn), that describe the relative deposited fractions of target material ions and neutrals onto the substrate, are determined to be in the range from 0.4 to 1.1.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 71-80 av 138
Typ av publikation
tidskriftsartikel (87)
rapport (29)
konferensbidrag (8)
doktorsavhandling (6)
licentiatavhandling (3)
bokkapitel (2)
visa fler...
annan publikation (1)
forskningsöversikt (1)
patent (1)
visa färre...
Typ av innehåll
refereegranskat (94)
övrigt vetenskapligt/konstnärligt (43)
populärvet., debatt m.m. (1)
Författare/redaktör
Brenning, Nils (129)
Lundin, Daniel (40)
Raadu, Michael A. (36)
Helmersson, Ulf (30)
Gudmundsson, Jon Tom ... (21)
Axnäs, Ingvar (12)
visa fler...
Huo, Chunqing (12)
Fälthammar, Carl-Gun ... (10)
Minea, T. (9)
Pilch, Iris (8)
Gudmundsson, Jon Tom ... (7)
Lundin, D (7)
Rudolph, M. (7)
Brenning, Nils, Prof ... (7)
Anders, Andre (6)
Hajihoseini, H. (6)
Hurtig, T. (6)
Rudolph, Martin (6)
Söderström, Daniel (6)
Minea, Tiberiu (6)
Hajihoseini, Hamidre ... (6)
Gunell, H. (6)
Nilsson, H (5)
Bohm, Martin (5)
Karlsson, Tomas (4)
Marklund, Göran (4)
Appelgren, Patrik (4)
Fischer, Joel (4)
Haerendel, G. (4)
Boyd, Robert (4)
Gunnarsson, Rickard (4)
Kelley, M.C. (4)
Providakes, J. (4)
Swenson, C. (4)
Zanaska, Michal (4)
Lundin, Daniel, 1980 ... (3)
Helmersson, Ulf, 195 ... (3)
Lattemann, Martina (3)
Alfvén, Hannes (3)
Anders, A. (3)
Hurtig, Tomas (3)
Olson, Jonas (3)
Kirkpatrick, Scott (3)
Gunell, Herbert (3)
Pfaff, R. (3)
Stenbaek-Nielsen, H. ... (3)
Wescott, E.M. (3)
Minea, Tiberiu M. (3)
Vitelaru, C. (3)
Vitelaru, Catalin (3)
visa färre...
Lärosäte
Kungliga Tekniska Högskolan (131)
Linköpings universitet (57)
Umeå universitet (6)
Uppsala universitet (6)
Luleå tekniska universitet (1)
Språk
Engelska (138)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (109)
Teknik (13)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy