SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "LAR1:gu ;mspu:(researchreview);lar1:(slu)"

Sökning: LAR1:gu > Forskningsöversikt > Sveriges Lantbruksuniversitet

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gabrielsson, Johan, et al. (författare)
  • Dose-Response-Time Data Analysis: An Underexploited Trinity
  • 2019
  • Ingår i: Pharmacological Reviews. - : American Society for Pharmacology & Experimental Therapeutics (ASPET). - 1521-0081 .- 0031-6997. ; 71:1, s. 89-122
  • Forskningsöversikt (refereegranskat)abstract
    • The most common approach to in vivo pharmacokinetic and pharmacodynamic analyses involves sequential analysis of the plasma concentration-and response-time data, such that the plasma kinetic model provides an independent function, driving the dynamics. However, in situations when plasma sampling may jeopardize the effect measurements or is scarce, nonexistent, or unlinked to the effect (e.g., in intensive care units, pediatric or frail elderly populations, or drug discovery), focusing on the response-time course alone may be an adequate alternative for pharmacodynamic analyses. Response-timedata inherently contain useful information about the turnover characteristics of response (target turnover rate, half-life of response), as well as the drug's biophase kinetics (biophase availability, absorption half-life, and disposition half-life) pharmacodynamic properties (potency, efficacy). The use of pharmacodynamic time-response data circumvents the need for a direct assay method for the drug and has the additional advantage of being applicable to cases of local drug administration close to its intended targets in the immediate vicinity of target, or when target precedes systemic plasma concentrations. This review exemplifies the potential of biophase functions in pharmacodynamic analyses in both preclinical and clinical studies, with the purpose of characterizing response data and optimizing subsequent study protocols. This article illustrates crucial determinants to the success of modeling dose-response-time (DRT) data, such as the dose selection, repeated dosing, and different input rates and routes. Finally, a literature search was also performed to gauge how frequently this technique has been applied in preclinical and clinical studies. This review highlights situations in which DRT should be carefully scrutinized and discusses future perspectives of the field.
  •  
2.
  • Gunnarsson, Bengt, 1954, et al. (författare)
  • Biophilia revisited: nature versus nurture
  • 2023
  • Ingår i: Trends in Ecology & Evolution. - 0169-5347 .- 1872-8383. ; 38:9, s. 792-4
  • Forskningsöversikt (refereegranskat)abstract
    • The “Biophilia” hypothesis highlighting humans´ innate, positive response to nature is both increasingly accepted and questioned. Studies support an updated Biophilia. The interplay between inheritance and environment, including culture, governs an individual´s response, from positive to negative. Variety in urban green spaces is needed to optimise benefits to all residents.
  •  
3.
  • Hamann, Maike, et al. (författare)
  • Inequality and the biosphere
  • 2018
  • Ingår i: Annual Review of Environment and Resources. - : Annual Reviews. - 1543-5938 .- 1545-2050. ; 43, s. 61-83
  • Forskningsöversikt (refereegranskat)abstract
    • Rising inequalities and accelerating global environmental change pose two of the most pressing challenges of the twenty-first century. To explore how these phenomena are linked, we apply a social-ecological systems perspective and review the literature to identify six different types of interactions (or "pathways") between inequality and the biosphere. We find that most of the research so far has only considered one-directional effects of inequality on the biosphere, or vice versa. However, given the potential for complex dynamics between socioeconomic and environmental factors within social-ecological systems, we highlight examples from the literature that illustrate the importance of cross-scale interactions and feedback loops between inequality and the biosphere. This review draws on diverse disciplines to advance a systemic understanding of the linkages between inequality and the biosphere, specifically recognizing cross-scale feedbacks and the multidimensional nature of inequality.
  •  
4.
  • Hansson, Elisabeth, 1955, et al. (författare)
  • Coupled cell networks are target cells of inflammation, which can spread between different body organs and develop into systemic chronic inflammation
  • 2015
  • Ingår i: Journal of Inflammation-London. - : Springer Science and Business Media LLC. - 1476-9255. ; 12
  • Forskningsöversikt (refereegranskat)abstract
    • Several organs in the body comprise cells coupled into networks. These cells have in common that they are excitable but do not express action potentials. Furthermore, they are equipped with Ca2+ signaling systems, which can be intercellular and/or extracellular. The transport of small molecules between the cells occurs through gap junctions comprising connexin 43. Examples of cells coupled into networks include astrocytes, keratinocytes, chondrocytes, synovial fibroblasts, osteoblasts, connective tissue cells, cardiac and corneal fibroblasts, myofibroblasts, hepatocytes, and different types of glandular cells. These cells are targets for inflammation, which can be initiated after injury or in disease. If the inflammation reaches the CNS, it develops into neuroinflammation and can be of importance in the development of systemic chronic inflammation, which can manifest as pain and result in changes in the expression and structure of cellular components. Biochemical parameters of importance for cellular functions are described in this review.
  •  
5.
  • Klionsky, Daniel J., et al. (författare)
  • Guidelines for the use and interpretation of assays for monitoring autophagy
  • 2012
  • Ingår i: Autophagy. - : Informa UK Limited. - 1554-8635 .- 1554-8627. ; 8:4, s. 445-544
  • Forskningsöversikt (refereegranskat)abstract
    • In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
  •  
6.
  • Lindahl, Björn, et al. (författare)
  • Fungal community analysis by high-throughput sequencing of amplified markers – a user's guide
  • 2013
  • Ingår i: New Phytologist. - : Wiley. - 0028-646X .- 1469-8137. ; 199:1, s. 288-299
  • Forskningsöversikt (refereegranskat)abstract
    • * Novel high-throughput sequencing methods outperform earlier approaches in terms of resolution and magnitude. They enable identification and relative quantification of community members and offer new insights into fungal community ecology. These methods are currently taking over as the primary tool to assess fungal communities of plant-associated endophytes, pathogens, and mycorrhizal symbionts, as well as free-living saprotrophs. * Taking advantage of the collective experience of six research groups, we here review the different stages involved in fungal community analysis, from field sampling via laboratory procedures to bioinformatics and data interpretation. We discuss potential pitfalls, alternatives, and solutions. * Highlighted topics are challenges involved in: obtaining representative DNA/RNA samples and replicates that encompass the targeted variation in community composition, selection of marker regions and primers, options for amplification and multiplexing, handling of sequencing errors, and taxonomic identification. * Without awareness of methodological biases, limitations of markers, and bioinformatics challenges, large-scale sequencing projects risk yielding artificial results and misleading conclusions.
  •  
7.
  • Linders, Torsten, 1971, et al. (författare)
  • Particle sources and transport in stratified Nordic coastal seas in the Anthropocene
  • 2018
  • Ingår i: Elementa: Science of the Anthropocene. - : University of California Press. - 2325-1026. ; 6:1
  • Forskningsöversikt (refereegranskat)abstract
    • Particles of all origins (biogenic, lithogenic, as well as anthropogenic) are fundamental components of the coastal ocean and are re-distributed by a wide variety of transport processes at both horizontal and vertical scales. Suspended particles can act as vehicles, as well as carbon and nutrient sources, for microorganisms and zooplankton before eventually settling onto the seafloor where they also provide food to benthic organisms. Different particle aggregation processes, driven by turbulence and particle stickiness, composition, abundance and size, impact the transport and sinking behavior of particles from the surface to the seafloor. In deep coastal waters, the deposition, resuspension, and accumulation of particles are driven by particle stickiness, composition and aggregate structure. In contrast, wave-driven and bottom current-driven processes in the nepheloid benthic boundary layer of shallow waters are of greater importance to the settling behavior of particles, while the retention capacity of benthic vegetation (e.g., seagrasses) further influences particle behavior. In this review, we consider the various processes by which particles are transported, as well as their sources and characteristics, in stratified coastal waters with a focus on Nordic seas. The role of particles in diminishing the quality of coastal waters is increasing in the Anthropocene, as particle loading by rivers and surface run-off includes not only natural particles, but also urban and agricultural particles with sorbed pollutants and contaminants of organic, inorganic and microplastic composition. Human activities such as trawling and dredging increase turbidity and further impact the transport of particles by resuspending particles and influencing their vertical and horizontal distribution patterns. An interdisciplinary approach combining physical, chemical and biological processes will allow us to better understand particle transport and its impact on coastal waters and estuaries at an ecosystem level. There is a need for development of novel analytical and characterization techniques, as well as new in situ sensors to improve our capacity to follow particle dynamics from nanometer to millimeter size scales.
  •  
8.
  • Nilsson, R. Henrik, 1976, et al. (författare)
  • Mycobiome diversity: high-throughput sequencing and identification of fungi.
  • 2019
  • Ingår i: Nature reviews. Microbiology. - : Springer Science and Business Media LLC. - 1740-1534 .- 1740-1526. ; 17, s. 95-109
  • Forskningsöversikt (refereegranskat)abstract
    • Fungi are major ecological players in both terrestrial and aquatic environments by cycling organic matter and channelling nutrients across trophic levels. High-throughput sequencing (HTS) studies of fungal communities are redrawing the map of the fungal kingdom by hinting at its enormous - and largely uncharted - taxonomic and functional diversity. However, HTS approaches come with a range of pitfalls and potential biases, cautioning against unwary application and interpretation of HTS technologies and results. In this Review, we provide an overview and practical recommendations for aspects of HTS studies ranging from sampling and laboratory practices to data processing and analysis. We also discuss upcoming trends and techniques in the field and summarize recent and noteworthy results from HTS studies targeting fungal communities and guilds. Our Review highlights the need for reproducibility and public data availability in the study of fungal communities. If the associated challenges and conceptual barriers are overcome, HTS offers immense possibilities in mycology and elsewhere.
  •  
9.
  • Niskanen, Tuula, et al. (författare)
  • Pushing the Frontiers of Biodiversity Research: Unveiling the Global Diversity, Distribution, and Conservation of Fungi
  • 2023
  • Ingår i: ANNUAL REVIEW OF ENVIRONMENT AND RESOURCES. - 1543-5938 .- 1545-2050. ; 48, s. 149-176
  • Forskningsöversikt (refereegranskat)abstract
    • Fungi comprise approximately 20% of all eukaryotic species and are connected to virtually all life forms on Earth. Yet, their diversity remains contentious, their distribution elusive, and their conservation neglected.We aim to flip this situation by synthesizing current knowledge.We present a revised estimate of 2-3 million fungal species with a "best estimate" at 2.5 million. To name the unknown >90% of these by the end of this century, we propose recognition of species known only from DNA data and call for large-scale sampling campaigns.We present an updated global map of fungal richness, highlighting tropical and temperate ecoregions of high diversity. We call for further Red List assessments and enhanced management guidelines to aid fungal conservation. Given that fungi play an inseparable role in our lives and in all ecosystems, and considering the fascinating questions remaining to be answered, we argue that fungi constitute the next frontier of biodiversity research.
  •  
10.
  • Reckermann, M., et al. (författare)
  • Human impacts and their interactions in the Baltic Sea region
  • 2022
  • Ingår i: Earth Syst. Dynam.. - : Copernicus GmbH. - 2190-4987 .- 2190-4979. ; 13:1, s. 1-80
  • Forskningsöversikt (refereegranskat)abstract
    • Coastal environments, in particular heavily populated semi-enclosed marginal seas and coasts like the Baltic Sea region, are strongly affected by human activities. A multitude of human impacts, including climate change, affect the different compartments of the environment, and these effects interact with each other. As part of the Baltic Earth Assessment Reports (BEAR), we present an inventory and discussion of different human-induced factors and processes affecting the environment of the Baltic Sea region, and their interrelations. Some are naturally occurring and modified by human activities (i.e. climate change, coastal processes, hypoxia, acidification, submarine groundwater discharges, marine ecosystems, non-indigenous species, land use and land cover), some are completely human-induced (i.e. agriculture, aquaculture, fisheries, river regulations, offshore wind farms, shipping, chemical contamination, dumped warfare agents, marine litter and microplastics, tourism, and coastal management), and they are all interrelated to different degrees. We present a general description and analysis of the state of knowledge on these interrelations. Our main insight is that climate change has an overarching, integrating impact on all of the other factors and can be interpreted as a background effect, which has different implications for the other factors. Impacts on the environment and the human sphere can be roughly allocated to anthropogenic drivers such as food production, energy production, transport, industry and economy. The findings from this inventory of available information and analysis of the different factors and their interactions in the Baltic Sea region can largely be transferred to other comparable marginal and coastal seas in the world.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11
Typ av publikation
Typ av innehåll
refereegranskat (11)
Författare/redaktör
Tedersoo, Leho (3)
Nilsson, R. Henrik, ... (2)
Abarenkov, Kessy (1)
Antonelli, Alexandre ... (1)
Bahram, Mohammad (1)
Wurzbacher, Christia ... (1)
visa fler...
Kõljalg, Urmas (1)
Lindahl, Björn (1)
Niskanen, Tuula (1)
Mikryukov, Vladimir (1)
Kjöller, Rasmus (1)
Liimatainen, Kare (1)
Hassellöv, Martin, 1 ... (1)
Wang, Jin (1)
Hansson, Elisabeth, ... (1)
Wang, Mei (1)
Strålfors, Peter (1)
Kominami, Eiki (1)
Salvesen, Guy (1)
Kiessling, Anders (1)
Akhtar, N. (1)
Zorita, E. (1)
Ploug, Helle (1)
Bonaldo, Paolo (1)
Minucci, Saverio (1)
Infantes, Eduardo (1)
Skiöldebrand, Eva (1)
Uvnäs-Moberg, Kersti ... (1)
Stenlid, Jan (1)
Sköld, Mattias (1)
De Milito, Angelo (1)
Karlsson, Therese, 1 ... (1)
Agholme, Lotta (1)
Kågedal, Katarina (1)
Durbeej-Hjalt, Madel ... (1)
Liu, Wei (1)
Clarke, Robert (1)
Hentati Sundberg, Jo ... (1)
Hedblom, Marcus (1)
Omstedt, Anders, 194 ... (1)
Kumar, Ashok (1)
Gabrielsson, Johan (1)
Wörman, Anders (1)
Dahlberg, Anders (1)
Brest, Patrick (1)
Simon, Hans-Uwe (1)
Mograbi, Baharia (1)
Melino, Gerry (1)
Mysorekar, Indira (1)
Albert, Matthew L (1)
visa färre...
Lärosäte
Göteborgs universitet (11)
Stockholms universitet (2)
Karolinska Institutet (2)
Kungliga Tekniska Högskolan (1)
visa fler...
Linköpings universitet (1)
Chalmers tekniska högskola (1)
visa färre...
Språk
Engelska (11)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (7)
Medicin och hälsovetenskap (6)
Lantbruksvetenskap (4)
Samhällsvetenskap (2)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy