SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Isaxon Christina) ;pers:(Hedmer Maria)"

Sökning: WFRF:(Isaxon Christina) > Hedmer Maria

  • Resultat 1-10 av 25
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abrahamsson, Camilla, et al. (författare)
  • Aerosolized particulate matter from fragmentation of carbon nanotube-enhanced concrete
  • 2023
  • Ingår i: Abstracts from the 2022 Airmon-10 conference and the 2023 Inhaled Particles and NanOEH conference. - 2398-7316 .- 2398-7308. ; 67:Supplement_1, s. i94-i95
  • Konferensbidrag (refereegranskat)abstract
    • Construction and demolition workers are exposed to high levels of particulate matter (PM) from building materials throughout their working life. Although nano-enabled building materials (NEBMs) may improve the performance and functionality of buildings, concerns are being raised regarding health risks from occupational exposure to PM from NEBMs. In this work, an experimental set-up for integrated resuspension and characterization of PM from NEBMs was developed and tested using three types of concrete (low density, normal, high strength), each enhanced with Carbon Nanotubes (CNTs) at different concentrations (0, low, high). The performance of portable devices used in occupational exposure assessments (DustTrak and NanoTracer) was compared with stationary instruments and gravimetric filter techniques. 40-70% of the mass and 90-98% of the number of particles were within the respirable fraction, with primary modes at 150 nm and 2-3 µm. Addition of CNTs significantly decreased mean particle number concentrations (PNCs) across the entire characterized size range (7 nm - 20 µm) for low density concrete, whereas the opposite was the case for normal strength and high strength concrete. It was hypothesised that the concrete matrix primarily governs the PM formation, which is in turn modulated by CNT-matrix interactions either suppressing or supporting fragmentation during crushing. SEM imaging could display partially submerged CNTs protruding from concrete fragments. Fundamental interactions at the interface of the nanomaterial and the surrounding matrix needs to be investigated to determine how the PM generated from NEBMs differ from their non-nano counterparts and how to prevent future exposure during demolition.
  •  
2.
  • Abrahamsson, Camilla, et al. (författare)
  • Characterization of airborne dust emissions from three types of crushed multi-walled carbon nanotube-enhanced concretes
  • 2024
  • Ingår i: NanoImpact. - 2452-0748. ; 34
  • Tidskriftsartikel (refereegranskat)abstract
    • Dispersing Multi-Walled Carbon Nanotubes (MWCNTs) into concrete at low (<1 wt% in cement) concentrations may improve concrete performance and properties and provide enhanced functionalities. When MWCNT-enhanced concrete is fragmented during remodelling or demolition, the stiff, fibrous and carcinogenic MWCNTs will, however, also be part of the respirable particulate matter released in the process. Consequently, systematic aerosolizing of crushed MWCNT-enhanced concretes in a controlled environment and measuring the properties of this aerosol can give valuable insights into the characteristics of the emissions such as concentrations, size range and morphology. These properties impact to which extent the emissions can be inhaled as well as where they are expected to deposit in the lung, which is critical to assess whether these materials might constitute a future health risk for construction and demolition workers. In this work, the impact from MWCNTs on aerosol characteristics was assessed for samples of three concrete types with various amounts of MWCNT, using a novel methodology based on the continuous drop method. MWCNT-enhanced concretes were crushed, aerosolized and the emitted particles were characterized with online and offline techniques. For light-weight porous concrete, the addition of MWCNT significantly reduced the respirable mass fraction (RESP) and particle number concentrations (PNC) across all size ranges (7 nm - 20 μm), indicating that MWCNTs dampened the fragmentation process by possibly reinforcing the microstructure of brittle concrete. For normal concrete, the opposite could be seen, where MWCNTs resulted in drastic increases in RESP and PNC, suggesting that the MWCNTs may be acting as defects in the concrete matrix, thus enhancing the fragmentation process. For the high strength concrete, the fragmentation decreased at the lowest MWCNT concentration, but increased again for the highest MWCNT concentration. All tested concrete types emitted <100 nm particles, regardless of CNT content. SEM imaging displayed CNTs protruding from concrete fragments, but no free fibers were detected.
  •  
3.
  • Abrahamsson, Camilla, et al. (författare)
  • Characterization of airborne dust emissions from three types of crushed multi-walled carbon nanotube-enhanced concretes
  • 2024
  • Ingår i: NanoImpact. - : Elsevier B.V.. - 2452-0748. ; 34
  • Tidskriftsartikel (refereegranskat)abstract
    • Dispersing Multi-Walled Carbon Nanotubes (MWCNTs) into concrete at low (<1 wt% in cement) concentrations may improve concrete performance and properties and provide enhanced functionalities. When MWCNT-enhanced concrete is fragmented during remodelling or demolition, the stiff, fibrous and carcinogenic MWCNTs will, however, also be part of the respirable particulate matter released in the process. Consequently, systematic aerosolizing of crushed MWCNT-enhanced concretes in a controlled environment and measuring the properties of this aerosol can give valuable insights into the characteristics of the emissions such as concentrations, size range and morphology. These properties impact to which extent the emissions can be inhaled as well as where they are expected to deposit in the lung, which is critical to assess whether these materials might constitute a future health risk for construction and demolition workers. In this work, the impact from MWCNTs on aerosol characteristics was assessed for samples of three concrete types with various amounts of MWCNT, using a novel methodology based on the continuous drop method. MWCNT-enhanced concretes were crushed, aerosolized and the emitted particles were characterized with online and offline techniques. For light-weight porous concrete, the addition of MWCNT significantly reduced the respirable mass fraction (RESP) and particle number concentrations (PNC) across all size ranges (7 nm – 20 μm), indicating that MWCNTs dampened the fragmentation process by possibly reinforcing the microstructure of brittle concrete. For normal concrete, the opposite could be seen, where MWCNTs resulted in drastic increases in RESP and PNC, suggesting that the MWCNTs may be acting as defects in the concrete matrix, thus enhancing the fragmentation process. For the high strength concrete, the fragmentation decreased at the lowest MWCNT concentration, but increased again for the highest MWCNT concentration. All tested concrete types emitted <100 nm particles, regardless of CNT content. SEM imaging displayed CNTs protruding from concrete fragments, but no free fibres were detected. 
  •  
4.
  •  
5.
  •  
6.
  • Hedmer, Maria, et al. (författare)
  • Exposure and Emission Measurements During Production, Purification, and Functionalization of Arc-Discharge-Produced Multi-walled Carbon Nanotubes.
  • 2014
  • Ingår i: Annals of Occupational Hygiene. - : Oxford University Press (OUP). - 1475-3162. ; 58:3, s. 355-379
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The production and use of carbon nanotubes (CNTs) is rapidly growing. With increased production, there is potential that the number of occupational exposed workers will rapidly increase. Toxicological studies on rats have shown effects in the lungs, e.g. inflammation, granuloma formation, and fibrosis after repeated inhalation exposure to some forms of multi-walled CNTs (MWCNTs). Still, when it comes to health effects, it is unknown which dose metric is most relevant. Limited exposure data for CNTs exist today and no legally enforced occupational exposure limits are yet established. The aim of this work was to quantify the occupational exposures and emissions during arc discharge production, purification, and functionalization of MWCNTs. The CNT material handled typically had a mean length <5 μm. Since most of the collected airborne CNTs did not fulfil the World Health Organization fibre dimensions (79% of the counted CNT-containing particles) and since no microscopy-based method for counting of CNTs exists, we decided to count all particle that contained CNTs. To investigate correlations between the used exposure metrics, Pearson correlation coefficient was used.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 25

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy