SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "L773:1352 2310 ;pers:(Tunved Peter)"

Search: L773:1352 2310 > Tunved Peter

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Ahn, Seo H., et al. (author)
  • Relationship between cloud condensation nuclei (CCN) concentration and aerosol optical depth in the Arctic region
  • 2021
  • In: Atmospheric Environment. - : Elsevier BV. - 1352-2310 .- 1873-2844. ; 267
  • Journal article (peer-reviewed)abstract
    • To determine the direct and indirect effects of aerosols on climate, it is important to know the spatial and temporal variations in cloud condensation nuclei (CCN) concentrations. Although many types of CCN measurements are available, extensive CCN measurements are challenging because of the complexity and high operating cost, especially in remote areas. As aerosol optical depth (AOD) can be readily observed by remote sensing, many attempts have been made to estimate CCN concentrations from AOD. In this study, the CCN-AOD relationship is parameterized based on CCN ground measurements from the Zeppelin Observatory (78.91 degrees N, 11.89 degrees E, 474 m asl) in the Arctic region. The AOD measurements were obtained from the Ny-Alesund site (78.923 degrees N, 11.928 degrees E) and Modern-Era Retrospective Analysis for Research and Applications, Version 2 reanalysis. Our results show a CCN-AOD correlation with a coefficient of determination R-2 of 0.59. Three additional estimation models for CCN were presented based on the following data: (i) in situ aerosol chemical composition, (ii) in situ aerosol optical properties, and (iii) chemical composition of AOD obtained from reanalysis data. The results from the model using in situ aerosol optical properties reproduced the observed CCN concentration most efficiently, suggesting that the contribution of BC to CCN concentration should be considered along with that of sulfate.
  •  
2.
  • Cirino, Glauber, et al. (author)
  • Observations of Manaus urban plume evolution and interaction with biogenic emissions in GoAmazon 2014/5
  • 2018
  • In: Atmospheric Environment. - : Elsevier BV. - 1352-2310 .- 1873-2844. ; 191, s. 513-524
  • Journal article (peer-reviewed)abstract
    • As part of the Observations and Modeling of the Green Ocean Amazon (GoAmazon 2014/5) Experiment, detailed aerosol and trace gas measurements were conducted near Manaus, a metropolis located in the central Amazon Basin. Measurements of aerosol particles and trace gases were done downwind Manaus at the sites T2 (Tiwa Hotel) and T3 (Manacapuru), at a distance of 8 and 70 km from Manaus, respectively. Based on in-plume measurements closer to Manaus (site T2), the chemical signatures of city emissions were used to improve the interpretation of pollutant levels at the T3 site. We derived chemical and physical properties for the city's atmospheric emission ensemble, taking into account only air masses impacted by the Manaus plume at both sites, during the wet and dry season Intensive Operating Periods (IOPs). At T2, average concentrations of aerosol number (CN), CO and SO2 were 5500 cm(-3) (between 10 and 490 nm), 145 ppb and 0.60 ppb, respectively, with a typical ratio ACN/ACO of 60-130 particles cm(-3) ppb(-1). The aerosol scattering (at RH < 60%) and absorption at 637 nm at T2 ranged from 10 to 50 M m(-1) and 5-10 M m(-1), respectively, leading to a mean single scattering albedo (SSA) of 0.70. In addition to identifying periods dominated by Manaus emissions at both T2 and T3, the plume transport between the two sampling sites was studied using back trajectory calculations. Results show that the presence of the Manaus plume at site T3 was important mainly during the daytime and at the end of the afternoons. During time periods directly impacted by Manaus emissions, an average aerosol number concentration of 3200 cm(-3) was measured at T3. Analysis of plume evolution between T2 and T3 indicates a transport time of 4-5 h. Changes of submicron organic and sulfate aerosols ratios relative to CO (Delta OA/Delta CO and Delta SO4/Delta CO, respectively) indicate significant production of secondary organic aerosol (SOA), corresponding to a 40% mass increase in OA and a 30% in SO4 mass concentration. Similarly, during air mass arrival at T3 the SSA increased to 0.83 from 0.70 at T2, mainly associated with an increase in organic aerosol concentration. Aerosol particle size distributions show a strong decrease in the Aitken nuclei mode (10-100 nm) during the transport from T2 to T3, in particular above 30 nm, as a result of efficient coagulation processes into larger particles. A decrease of 30% in the particle number concentration and an increase of about 50 nm in geometric mean diameter were observed from T2 to T3 sites. The study of the evolution of aerosol properties downwind of the city of Manaus improves our understanding of how coupling of anthropogenic and biogenic sources may be impacting the sensitive Amazonian atmosphere.
  •  
3.
  • Hoffmann, Anne, et al. (author)
  • Remote sensing and in situ measurements of tropospheric aerosol, a pamarcmip case study
  • 2012
  • In: Atmospheric Environment. - : Elsevier BV. - 1352-2310 .- 1873-2844. ; 52, s. 56-66
  • Journal article (peer-reviewed)abstract
    • In this work, a closure experiment for tropospheric aerosol is presented. Aerosol size distributions and single scattering albedo from remote sensing data are compared to those measured in-situ. An aerosol pollution event on 4 April 2009 was observed by ground based and airborne lidar and photometer in and around Ny-Alesund, Spitsbergen, as well as by DMPS, nephelometer and particle soot absorption photometer at the nearby Zeppelin Mountain Research Station. The presented measurements were conducted in an area of 40 x 20 km around Ny-Alesund as part of the 2009 Polar Airborne Measurements and Arctic Regional Climate Model Simulation Project (PAMARCMiP). Aerosol mainly in the accumulation mode was found in the lower troposphere, however, enhanced backscattering was observed up to the tropopause altitude. A comparison of meteorological data available at different locations reveals a stable multi-layer-structure of the lower troposphere. It is followed by the retrieval of optical and microphysical aerosol parameters. Extinction values have been derived using two different methods, and it was found that extinction (especially in the UV) derived from Raman lidar data significantly surpasses the extinction derived from photometer AOD profiles. Airborne lidar data shows volume depolarization values to be less than 2.5% between 500 m and 2.5 km altitude, hence, particles in this range can be assumed to be of spherical shape. In-situ particle number concentrations measured at the Zeppelin Mountain Research Station at 474 m altitude peak at about 0.18 mu m diameter, which was also found for the microphysical inversion calculations performed at 850 m and 1500 m altitude. Number concentrations depend on the assumed extinction values, and slightly decrease with altitude as well as the effective particle diameter. A low imaginary part in the derived refractive index suggests weakly absorbing aerosols, which is confirmed by low black carbon concentrations, measured at the Zeppelin Mountain as well as on board the Polar 5 aircraft.
  •  
4.
  • Rao, P. S. P., et al. (author)
  • Sources of chemical species in rainwater during monsoon and non-monsoonal periods over two mega cities in India and dominant source region of secondary aerosols
  • 2016
  • In: Atmospheric Environment. - : Elsevier BV. - 1352-2310 .- 1873-2844. ; 146, s. 90-99
  • Journal article (peer-reviewed)abstract
    • Samples of rainwater (RW) were collected to characterize the chemistry and sources in two representative megacities at Pune (Southwest) and Delhi (Northern) India from 2011 to 2014 across two seasons: monsoon (MN) and non-monsoon (NMN). Collected RW samples were analyzed for major chemical constituents (F-, Cl-, SO42-, NO3-, NH4+, Na+, K+, Ca2+, and Mg2+), pH and conductivity. In addition, bicarbonate (HCO3-) was also estimated. The mean pH values of the RW were >6 at Pune and <6 at Delhi and 4% and 26% were acidic, respectively. The mean sum of all measured ionic species in Pune and Delhi was 304.7 and 536.4 mu ep/l, respectively, indicating that significant atmospheric pollution effects in these Indian mega cities. Both the Ca2+ and SO42- were the dominant ions, accounting for 43% (Pune) and 54% (Delhi) of the total ions. The sum of measured ions during the NMN period was greater than the NM period by a factor of 1.5 for Pune (278.4: NM and 412.1: NMN mu eq/l) and a factor of about 2.5 for Delhi (406 and 1037.7 mu eq/l). The contributions of SO42- and NO3- to the RW acidity were similar to 40% and 60%, respectively, at Pune and correspondingly, 36% and 64% at Delhi. The concentrations of secondary aerosols (SO42- and NO3-) were higher by a factor of two and three when the air masses were transported to Pune from the continental side. At Delhi, the concentrations of SO42-, NO3-, Ca2+, and Mg2+ were significantly higher when the air masses arrive from Punjab, Haryana, and Pakistan indicating the greater atmospheric pollution over the Indo-Gangetic Plain. Positive matrix factorization was applied to the source apportionment of the deposition fluxes of these ions. Three factors were obtained for Pune and four for Delhi. The sources at Pune were secondary aerosols from fossil fuel combustion, soil dust, and marine, whereas, at Delhi, the sources were soil, fossil fuel combustion, biomass burning, and industrial chlorine.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view