SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rhode W.) ;pers:(Landsman H.)"

Sökning: WFRF:(Rhode W.) > Landsman H.

  • Resultat 31-40 av 73
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
31.
  • Abbasi, R., et al. (författare)
  • Search for a diffuse flux of astrophysical muon neutrinos with the IceCube 40-string detector
  • 2011
  • Ingår i: Physical Review D. - 1550-7998 .- 1550-2368. ; 84:8, s. 082001-
  • Tidskriftsartikel (refereegranskat)abstract
    • The IceCube Neutrino Observatory is a 1 km(3) detector currently taking data at the South Pole. One of the main strategies used to look for astrophysical neutrinos with IceCube is the search for a diffuse flux of high-energy neutrinos from unresolved sources. A hard energy spectrum of neutrinos from isotropically distributed astrophysical sources could manifest itself as a detectable signal that may be differentiated from the atmospheric neutrino background by spectral measurement. This analysis uses data from the IceCube detector collected in its half completed configuration which operated between April 2008 and May 2009 to search for a diffuse flux of astrophysical muon neutrinos. A total of 12 877 upward-going candidate neutrino events have been selected for this analysis. No evidence for a diffuse flux of astrophysical muon neutrinos was found in the data set leading to a 90% C. L. upper limit on the normalization of an E(-2) astrophysical nu(mu) flux of 8.9 x 10(-9) GeV cm(-2) s(-1) sr(-1). The analysis is sensitive in the energy range between 35 TeV and 7 PeV. The 12 877 candidate neutrino events are consistent with atmospheric muon neutrinos measured from 332 GeV to 84 TeV and no evidence for a prompt component to the atmospheric neutrino spectrum is found.
  •  
32.
  • Abbasi, R., et al. (författare)
  • Search for dark matter from the Galactic halo with the IceCube Neutrino Telescope
  • 2011
  • Ingår i: Physical Review D. - 1550-7998 .- 1550-2368. ; 84:2, s. 022004-
  • Tidskriftsartikel (refereegranskat)abstract
    • Self-annihilating or decaying dark matter in the Galactic halo might produce high energy neutrinos detectable with neutrino telescopes. We have conducted a search for such a signal using 276 days of data from the IceCube 22-string configuration detector acquired during 2007 and 2008. The effect of halo model choice in the extracted limit is reduced by performing a search that considers the outer halo region and not the Galactic Center. We constrain any large-scale neutrino anisotropy and are able to set a limit on the dark matter self-annihilation cross section of h similar or equal to 10(-22) cm(3) s(-1) for weakly interacting massive particle masses above 1 TeV, assuming a monochromatic neutrino line spectrum.
  •  
33.
  • Abbasi, R., et al. (författare)
  • Search for muon neutrinos from gamma-ray bursts with the IceCube neutrino telescope
  • 2010
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 710:1, s. 346-359
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the results of searches for high-energy muon neutrinos from 41 gamma-ray bursts (GRBs) in the northern sky with the IceCube detector in its 22 string configuration active in 2007/2008. The searches cover both the prompt and a possible precursor emission as well as a model-independent, wide time window of -1 hr to + 3 hr around each GRB. In contrast to previous searches with a large GRB population, we do not utilize a standard Waxman-Bahcall GRB flux for the prompt emission but calculate individual neutrino spectra for all 41 GRBs from the burst parameters measured by satellites. For all of the three time windows, the best estimate for the number of signal events is zero. Therefore, we place 90% CL upper limits on the fluence from the prompt phase of 3.7 x 10(-3) erg cm(-2) (72 TeV-6.5 PeV) and on the fluence from the precursor phase of 2.3 x 10(-3) erg cm(-2) (2.2-55 TeV), where the quoted energy ranges contain 90% of the expected signal events in the detector. The 90% CL upper limit for the wide time window is 2.7 x 10(-3) erg cm(-2) (3 TeV-2.8 PeV) assuming an E-2 flux.
  •  
34.
  • Abbasi, R., et al. (författare)
  • Search for neutrino-induced cascades with five years of AMANDA data
  • 2011
  • Ingår i: Astroparticle physics. - : Elsevier BV. - 0927-6505 .- 1873-2852. ; 34:6, s. 420-430
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the search for electromagnetic and hadronic showers ("cascades") produced by a diffuse flux of extraterrestrial neutrinos in the AMANDA neutrino telescope. Data for this analysis were recorded during 1001 days of detector livetime in the years 2000-2004. The observed event rates are consistent with the background expectation from atmospheric neutrinos and muons. An upper limit is derived for the diffuse flux of neutrinos of all flavors assuming a flavor ratio of v(e):v(mu):v(tau) = 1:1:1 at the detection site. The all-flavor flux of neutrinos with an energy spectrum Phi proportional to E-2 is less than 5.0 x 10(-7) GeV s(-1) sr(-1) cm(-2) at a 90% C.L. Here, 90% of the simulated signal would fall within the energy range 40 TeV to 9 PeV. We discuss flux limits in the context of several specific models of extraterrestrial and prompt atmospheric neutrino production.
  •  
35.
  • Abbasi, R., et al. (författare)
  • Search for ultrahigh-energy tau neutrinos with IceCube
  • 2012
  • Ingår i: Physical Review D. - 1550-7998 .- 1550-2368. ; 86:2, s. 022005-
  • Tidskriftsartikel (refereegranskat)abstract
    • The first dedicated search for ultrahigh-energy (UHE) tau neutrinos of astrophysical origin was performed using the IceCube detector in its 22-string configuration with an instrumented volume of roughly 0: 25 km(3). The search also had sensitivity to UHE electron and muon neutrinos. After application of all selection criteria to approximately 200 live-days of data, we expect a background of 0.60 +/- 0.19(stat)(-0.58)(+0.56)(syst) events and observe three events, which after inspection, emerge as being compatible with background but are kept in the final sample. Therefore, we set an upper limit on neutrinos of all flavors from UHE astrophysical sources at 90% C.L. of E-v(2)Phi(90)(v(x)) < 16.3 x 10(-8) GeV cm(-2) sr(-1) s(-1) over an estimated primary neutrino energy range of 340 TeV to 200 PeV.
  •  
36.
  • Abbasi, R., et al. (författare)
  • Searches for periodic neutrino emission from binary systems with 22 and 40 strings of IceCube
  • 2012
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 748:2, s. 118-
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper, we present the results of searches for periodic neutrino emission from a catalog of binary systems. Such modulation, observed in the photon flux, would be caused by the geometry of these systems. In the analysis, the period is fixed by these photon observations, while the phase and duration of the neutrino emission are treated as free parameters to be fit with the data. If the emission occurs during similar to 20% or less of the total period, this analysis achieves better sensitivity than a time-integrated analysis. We use the IceCube data taken from 2007 May 31 to 2008 April 5 with its 22 string configuration and from 2008 April 5 to 2009 May 20 with its 40 string configuration. No evidence for neutrino emission is found, with the strongest excess occurring for Cygnus X-3 at 2.1 sigma significance after accounting for trials. Neutrino flux upper limits for both periodic and time-integrated emission are provided.
  •  
37.
  • Abbasi, R., et al. (författare)
  • The design and performance of IceCube DeepCore
  • 2012
  • Ingår i: Astroparticle physics. - : Elsevier BV. - 0927-6505 .- 1873-2852. ; 35:10, s. 615-624
  • Tidskriftsartikel (refereegranskat)abstract
    • The IceCube neutrino observatory in operation at the South Pole, Antarctica, comprises three distinct components: a large buried array for ultrahigh energy neutrino detection, a surface air shower array, and a new buried component called DeepCore. DeepCore was designed to lower the IceCube neutrino energy threshold by over an order of magnitude, to energies as low as about 10 GeV. DeepCore is situated primarily 2100 m below the surface of the icecap at the South Pole, at the bottom center of the existing IceCube array, and began taking physics data in May 2010. Its location takes advantage of the exceptionally clear ice at those depths and allows it to use the surrounding IceCube detector as a highly efficient active veto against the principal background of downward-going muons produced in cosmic-ray air showers. DeepCore has a module density roughly five times higher than that of the standard IceCube array, and uses photomultiplier tubes with a new photocathode featuring a quantum efficiency about 35% higher than standard IceCube PMTs. Taken together, these features of DeepCore will increase IceCube's sensitivity to neutrinos from WIMP dark matter annihilations, atmospheric neutrino oscillations, galactic supernova neutrinos, and point sources of neutrinos in the northern and southern skies. In this paper we describe the design and initial performance of DeepCore.
  •  
38.
  • Abbasi, R., et al. (författare)
  • Time-dependent searches for point sources of neutrinos with the 40-string and 22-string configurations of IceCube
  • 2012
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 744:1, s. 1-
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper presents four searches for flaring sources of neutrinos using the IceCube neutrino telescope. For the first time, a search is performed over the entire parameter space of energy, direction, and time with sensitivity to neutrino flares lasting between 20 mu s and a year duration from astrophysical sources. Searches that integrate over time are less sensitive to flares because they are affected by a larger background of atmospheric neutrinos and muons that can be reduced by the use of additional timing information. Flaring sources considered here, such as active galactic nuclei, soft gamma-ray repeaters, and gamma-ray bursts, are promising candidate neutrino emitters. Two searches are "untriggered" in the sense that they look for any possible flare in the entire sky and from a predefined catalog of sources from which photon flares have been recorded. The other two searches are triggered by multi-wavelength information on flares from blazars and from a soft gamma-ray repeater. One triggered search uses lightcurves from Fermi-LAT which provides continuous monitoring. A second triggered search uses information where the flux states have been measured only for short periods of time near the flares. The untriggered searches use data taken by 40 strings of IceCube between 2008 April 5 and 2009 May 20. The triggered searches also use data taken by the 22-string configuration of IceCube operating between 2007 May 31 and 2008 April 5. The results from all four searches are compatible with a fluctuation of the background.
  •  
39.
  • Abbasi, R., et al. (författare)
  • Time-integrated Searches for Point-like Sources of Neutrinos with the 40-string IceCube Detector
  • 2011
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 732:1, s. 18-
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the results of time-integrated searches for astrophysical neutrino sources in both the northern and southern skies. Data were collected using the partially completed IceCube detector in the 40-string configuration recorded between 2008 April 5 and 2009 May 20, totaling 375.5 days livetime. An unbinned maximum likelihood ratio method is used to search for astrophysical signals. The data sample contains 36,900 events: 14,121 from the northern sky, mostly muons induced by atmospheric neutrinos, and 22,779 from the southern sky, mostly high-energy atmospheric muons. The analysis includes searches for individual point sources and stacked searches for sources in a common class, sometimes including a spatial extent. While this analysis is sensitive to TeV-PeV energy neutrinos in the northern sky, it is primarily sensitive to neutrinos with energy greater than about 1 PeV in the southern sky. No evidence for a signal is found in any of the searches. Limits are set for neutrino fluxes from astrophysical sources over the entire sky and compared to predictions. The sensitivity is at least a factor of two better than previous searches (depending on declination), with 90% confidence level muon neutrino flux upper limits being between E(2)d Phi/dE similar to 2-200 x 10(-12) TeV cm(-2) s(-1) in the northern sky and between 3-700 x 10(-12) TeV cm(-2) s(-1) in the southern sky. The stacked source searches provide the best limits to specific source classes. The full IceCube detector is expected to improve the sensitivity to d Phi/dE proportional to E-2 sources by another factor of two in the first year of operation.
  •  
40.
  • Achterberg, A., et al. (författare)
  • Detection of atmospheric muon neutrinos with the IceCube 9-string detector
  • 2007
  • Ingår i: Physical Review D - Particles, Fields, Gravitation and Cosmology. - 1550-7998. ; 76:2, s. 027101-
  • Tidskriftsartikel (refereegranskat)abstract
    • The IceCube neutrino detector is a cubic kilometer TeV to PeV neutrino detector under construction at the geographic South Pole. The dominant population of neutrinos detected in IceCube is due to meson decay in cosmic-ray air showers. These atmospheric neutrinos are relatively well understood and serve as a calibration and verification tool for the new detector. In 2006, the detector was approximately 10% completed, and we report on data acquired from the detector in this configuration. We observe an atmospheric neutrino signal consistent with expectations, demonstrating that the IceCube detector is capable of identifying neutrino events. In the first 137.4 days of live time, 234 neutrino candidates were selected with an expectation of 211 +/- 76.1(syst)+/- 14.5(stat) events from atmospheric neutrinos.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 31-40 av 73

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy