SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Murtagh Donal P. 1959 ) srt2:(2013)"

Sökning: WFRF:(Murtagh Donal P. 1959 ) > (2013)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kasai, Y., et al. (författare)
  • Validation of stratospheric and mesospheric ozone observed by SMILES from International Space Station
  • 2013
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 6:9, s. 2311-2338
  • Tidskriftsartikel (refereegranskat)abstract
    • We observed ozone (O3) in the vertical region between 250 and 0.0005 hPa (~ 12–96 km) using the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) on the Japanese Experiment Module (JEM) of the International Space Station (ISS) between 12 October 2009 and 21 April 2010. The new 4 K superconducting heterodyne receiver technology of SMILES allowed us to obtain a one order of magnitude better signal-to-noise ratio for the O3 line observation compared to past spaceborne microwave instruments. The non-sun-synchronous orbit of the ISS allowed us to observe O3 at various local times. We assessed the quality of the vertical profiles of O3 in the 100–0.001 hPa (~ 16–90 km) region for the SMILES NICT Level 2 product version 2.1.5. The evaluation is based on four components: error analysis; internal comparisons of observations targeting three different instrumental setups for the same O3 625.371 GHz transition; internal comparisons of two different retrieval algorithms; and external comparisons for various local times with ozonesonde, satellite and balloon observations (ENVISAT/MIPAS, SCISAT/ACE-FTS, Odin/OSIRIS, Odin/SMR, Aura/MLS, TELIS). SMILES O3 data have an estimated absolute accuracy of better than 0.3 ppmv (3%) with a vertical resolution of 3–4 km over the 60 to 8 hPa range. The random error for a single measurement is better than the estimated systematic error, being less than 1, 2, and 7%, in the 40–1, 80–0.1, and 100–0.004 hPa pressure regions, respectively. SMILES O3 abundance was 10–20% lower than all other satellite measurements at 8–0.1 hPa due to an error arising from uncertainties of the tangent point information and the gain calibration for the intensity of the spectrum. SMILES O3 from observation frequency Band-B had better accuracy than that from Band-A. A two month period is required to accumulate measurements covering 24 h in local time of O3 profile. However such a dataset can also contain variation due to dynamical, seasonal, and latitudinal effects
  •  
2.
  • Baron, P., et al. (författare)
  • Observation of horizontal winds in the middle-atmosphere between 30 degrees S and 55 degrees N during the northern winter 2009-2010
  • 2013
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 13:12, s. 6049-6064
  • Tidskriftsartikel (refereegranskat)abstract
    • Although the links between stratospheric dynamics, climate and weather have been demonstrated, direct observations of stratospheric winds are lacking, in particular at altitudes above 30 km. We report observations of winds between 8 and 0.01 hPa (similar to 35-80 km) from October 2009 to April 2010 by the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) on the International Space Station. The altitude range covers the region between 35-60 km where previous space-borne wind instruments show a lack of sensitivity. Both zonal and meridional wind components were obtained, though not simultaneously, in the latitude range from 30 degrees S to 55 degrees N and with a single profile precision of 7-9 ms(-1) between 8 and 0.6 hPa and better than 20 ms(-1) at altitudes above. The vertical resolution is 5-7 km except in the upper part of the retrieval range (10 km at 0.01 hPa). In the region between 1-0.05 hPa, an absolute value of the mean difference 5 ms(-1)). In the mesosphere, SMILES and ECMWF zonal winds exhibit large differences (>20 ms(-1)), especially in the tropics. We illustrate our results by showing daily and monthly zonal wind variations, namely the semi-annual oscillation in the tropics and reversals of the flow direction between 50-55 degrees N during sudden stratospheric warmings. The daily comparison with ECMWF winds reveals that in the beginning of February, a significantly stronger zonal westward flow is measured in the tropics at 2 hPa compared to the flow computed in the analysis (difference of similar to 20 ms(-1)). The results show that the comparison between SMILES and ECMWF winds is not only relevant for the quality assessment of the new SMILES winds, but it also provides insights on the quality of the ECMWF winds themselves. Although the instrument was not specifically designed for measuring winds, the results demonstrate that space-borne sub-mm wave radiometers have the potential to provide good quality data for improving the stratospheric winds in atmospheric models.
  •  
3.
  • Imai, Koji, et al. (författare)
  • Validation of ozone data from the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES)
  • 2013
  • Ingår i: Journal of Geophysical Research. - : American Geophysical Union (AGU). - 0148-0227 .- 2156-2202 .- 2169-897X. ; 118:11, s. 5750-5769
  • Tidskriftsartikel (refereegranskat)abstract
    • The Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) onboard the International Space Station provided global measurements of ozone profiles in the middle atmosphere from 12 October 2009 to 21 April 2010. We present validation studies of the SMILES version 2.1 ozone product based on coincidence statistics with satellite observations and outputs of chemistry and transport models (CTMs). Comparisons of the stratospheric ozone with correlative data show agreements that are generally within 10%. In the mesosphere, the agreement is also good and better than 30% even at a high altitude of 73km, and the SMILES measurements with their local time coverage also capture the diurnal variability very well. The recommended altitude range for scientific use is from 16 to 73km. We note that the SMILES ozone values for altitude above 26km are smaller than some of the correlative satellite datasets; conversely the SMILES values in the lower stratosphere tend to be larger than correlative data, particularly in the tropics, with less than 8% difference below similar to 24km. The larger values in the lower stratosphere are probably due to departure of retrieval results between two detection bands at altitudes below 28km; it is similar to 3% at 24km and is increasing rapidly down below.
  •  
4.
  • Khosravi, Maryam, 1975, et al. (författare)
  • Diurnal variation of stratospheric and lower mesospheric HOCl, ClO and HO2 at the equator: comparison of 1-D model calculations with measurements by satellite instruments
  • 2013
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 13:15, s. 7587-7606
  • Tidskriftsartikel (refereegranskat)abstract
    • The diurnal variation of HOCl and the related species ClO, HO2 and HCl measured by satellites has been compared with the results of a one-dimensional photochemical model. The study compares the data from various limb-viewing instruments with model simulations from the middle stratosphere to the lower mesosphere. Data from three sub-millimetre instruments and two infrared spectrometers are used, namely from the Sub-Millimetre Radiometer (SMR) on board Odin, the Microwave Limb Sounder (MLS) on board Aura, the Superconducting Submillimeter-wave Limb-Emission Sounder (SMILES) on the International Space Station, the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on board ENVISAT, and the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) on board SCISAT. Inter-comparison of the measurements from instruments on sun-synchronous satellites (SMR, MLS, MIPAS) and measurements from solar occultation instruments (ACE-FTS) is challenging since the measurements correspond to different solar zenith angles (or local times). However, using a model which covers all solar zenith angles and data from the SMILES instrument which measured at all local times over a period of several months provides the possibility to verify the model and to indirectly compare the diurnally variable species. The satellite data were averaged for latitudes of 20 degrees S to 20 degrees N for the SMILES observation period from November 2009 to April 2010 and were compared at three altitudes: 35, 45 and 55 km. Besides presenting the SMILES data, the study also shows a first comparison of the latest MLS data (version 3.3) of HOCl, ClO, and HO2 with other satellite observations, as well as a first evaluation of HO2 observations made by Odin/SMR. The MISU-1D model has been carefully initialised and run for conditions and locations of the observations. The diurnal cycle features for the species investigated here are generally well reproduced by the model. The satellite observations and the model agree well in terms of absolute mixing ratios. The differences between the day and night values of the model are in good agreement with the observations although the amplitude of the HO2 diurnal variation is 10-20 % lower in the model than in the observations. In particular, the data offered the opportunity to study the reaction ClO+HO2 -> HOCl+O-2 in the lower mesosphere at 55 km. At this altitude the HOCl night-time variation depends only on this reaction. The result of this analysis points towards a value of the rate constant within the range of the JPL 2006 recommendation and the upper uncertainty limit of the JPL 2011 recommendation at 55 km.
  •  
5.
  • Sagawa, H., et al. (författare)
  • Comparison of SMILES ClO profiles with satellite, balloon-borne and ground-based measurements
  • 2013
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 6:12, s. 3325-3347
  • Tidskriftsartikel (refereegranskat)abstract
    • We evaluate the quality of ClO profiles derived from the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) on the International Space Station (ISS). Version 2.1.5 of the level-2 product generated by the National Institute of Information and Communications Technology (NICT) is the subject of this study. Based on sensitivity studies, the systematic error was estimated as 5–10 pptv at the pressure range of 80–20 hPa, 35 pptv at the ClO peak altitude (~ 4 hPa), and 5–10 pptv at pressures ≤ 0.5 hPa for daytime mid-latitude conditions. For nighttime measurements, a systematic error of 8 pptv was estimated for the ClO peak altitude (~ 2 hPa). The SMILES NICT v2.1.5 ClO profiles agree with those derived from another level-2 processor developed by the Japan Aerospace Exploration Agency (JAXA) within the bias uncertainties, except for the nighttime measurements in the low and middle latitude regions where the SMILES NICT v2.1.5 profiles have a negative bias of ~ 30 pptv in the lower stratosphere. This bias is considered to be due to the use of a limited spectral bandwidth in the retrieval process of SMILES NICT v2.1.5, which makes it difficult to distinguish between the weak ClO signal and wing contributions of spectral features outside the bandwidth. In the middle and upper stratosphere outside the polar regions, no significant systematic bias was found for the SMILES NICT ClO profile with respect to data sets from other instruments such as the Aura Microwave Limb Sounder (MLS), the Odin Sub-Millimetre Radiometer (SMR), the Envisat Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), and the ground-based radiometer at Mauna Kea, which demonstrates the scientific usability of the SMILES ClO data including the diurnal variations. Inside the chlorine-activated polar vortex, the SMILES NICT v2.1.5 ClO profiles show larger volume mixing ratios by 0.4 ppbv (30%) at 50 hPa compared to those of the JAXA processed profiles. This discrepancy is also considered to be an effect of the limited spectral bandwidth in the retrieval processing. We also compared the SMILES NICT ClO profiles of chlorine-activated polar vortex conditions with those measured by the balloon-borne instruments: Terahertz and submillimeter Limb Sounder (TELIS) and the MIPAS-balloon instrument (MIPAS-B). In conclusion, the SMILES NICT v2.1.5 ClO data can be used at pressures ≤ ~30 hPa for scientific analysis.
  •  
6.
  • Sofieva, V. F., et al. (författare)
  • Harmonized dataset of ozone profiles from satellite limb and occultation measurements
  • 2013
  • Ingår i: Earth System Science Data. - : Copernicus GmbH. - 1866-3516 .- 1866-3508. ; 5:2, s. 349-363
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper, we present a HARMonized dataset of OZone profiles (HARMOZ) based on limb and occultation measurements from Envisat (GOMOS, MIPAS and SCIAMACHY), Odin (OSIRIS, SMR) and SCISAT (ACE-FTS) satellite instruments. These measurements provide high-vertical-resolution ozone profiles covering the altitude range from the upper troposphere up to the mesosphere in years 2001–2012. HARMOZ has been created in the framework of the European Space Agency Climate Change Initiative project.The harmonized dataset consists of original retrieved ozone profiles from each instrument, which are screened for invalid data by the instrument teams. While the original ozone profiles are presented in different units and on different vertical grids, the harmonized dataset is given on a common pressure grid in netCDF (network common data form)-4 format. The pressure grid corresponds to vertical sampling of ~ 1 km below 20 km and 2–3 km above 20 km. The vertical range of the ozone profiles is specific for each instrument, thus all information contained in the original data is preserved. Provided altitude and temperature profiles allow the representation of ozone profiles in number density or mixing ratio on a pressure or altitude vertical grid. Geolocation, uncertainty estimates and vertical resolution are provided for each profile. For each instrument, optional parameters, which are related to the data quality, are also included.For convenience of users, tables of biases between each pair of instruments for each month, as well as bias uncertainties, are provided. These tables characterize the data consistency and can be used in various bias and drift analyses, which are needed, for instance, for combining several datasets to obtain a long-term climate dataset.This user-friendly dataset can be interesting and useful for various analyses and applications, such as data merging, data validation, assimilation and scientific research.The dataset is available at http://www.esa-ozone-cci.org/?q=node/161 or at doi:10.5270/esa-ozone_cci-limb_occultation_profiles-2001_2012-v_1-201308.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy