SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1680 7316 srt2:(2013)"

Sökning: L773:1680 7316 > (2013)

  • Resultat 1-10 av 28
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Baron, P., et al. (författare)
  • Observation of horizontal winds in the middle-atmosphere between 30 degrees S and 55 degrees N during the northern winter 2009-2010
  • 2013
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 13:12, s. 6049-6064
  • Tidskriftsartikel (refereegranskat)abstract
    • Although the links between stratospheric dynamics, climate and weather have been demonstrated, direct observations of stratospheric winds are lacking, in particular at altitudes above 30 km. We report observations of winds between 8 and 0.01 hPa (similar to 35-80 km) from October 2009 to April 2010 by the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) on the International Space Station. The altitude range covers the region between 35-60 km where previous space-borne wind instruments show a lack of sensitivity. Both zonal and meridional wind components were obtained, though not simultaneously, in the latitude range from 30 degrees S to 55 degrees N and with a single profile precision of 7-9 ms(-1) between 8 and 0.6 hPa and better than 20 ms(-1) at altitudes above. The vertical resolution is 5-7 km except in the upper part of the retrieval range (10 km at 0.01 hPa). In the region between 1-0.05 hPa, an absolute value of the mean difference 5 ms(-1)). In the mesosphere, SMILES and ECMWF zonal winds exhibit large differences (>20 ms(-1)), especially in the tropics. We illustrate our results by showing daily and monthly zonal wind variations, namely the semi-annual oscillation in the tropics and reversals of the flow direction between 50-55 degrees N during sudden stratospheric warmings. The daily comparison with ECMWF winds reveals that in the beginning of February, a significantly stronger zonal westward flow is measured in the tropics at 2 hPa compared to the flow computed in the analysis (difference of similar to 20 ms(-1)). The results show that the comparison between SMILES and ECMWF winds is not only relevant for the quality assessment of the new SMILES winds, but it also provides insights on the quality of the ECMWF winds themselves. Although the instrument was not specifically designed for measuring winds, the results demonstrate that space-borne sub-mm wave radiometers have the potential to provide good quality data for improving the stratospheric winds in atmospheric models.
  •  
2.
  • D'Andrea, S. D., et al. (författare)
  • Understanding global secondary organic aerosol amount and size-resolved condensational behavior
  • 2013
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 13:22, s. 11519-11534
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent research has shown that secondary organic aerosols (SOA) are major contributors to ultrafine particle growth to climatically relevant sizes, increasing global cloud condensation nuclei (CCN) concentrations within the continental boundary layer (BL). However, there are three recent developments regarding the condensation of SOA that lead to uncertainties in the contribution of SOA to particle growth and CCN concentrations: (1) while many global models contain only biogenic sources of SOA (with annual production rates generally 10-30 Tg yr(-1)), recent studies have shown that an additional source of SOA around 100 Tg yr(-1) correlated with anthropogenic carbon monoxide (CO) emissions may be required to match measurements. (2) Many models treat SOA solely as semi-volatile, which leads to condensation of SOA proportional to the aerosol mass distribution; however, recent closure studies with field measurements show nucleation mode growth can be captured only if it is assumed that a significant fraction of SOA condenses proportional to the Fuchs-corrected aerosol surface area. This suggests a very low volatility of the condensing vapors. (3) Other recent studies of particle growth show that SOA con-densation at sizes smaller than 10 nm and that size-dependent growth rate parameterizations (GRP) are needed to match measurements. We explore the significance of these three findings using GEOS-Chem-TOMAS global aerosol microphysics model and observations of aerosol size distributions around the globe. The change in the concentration of particles of size D-p > 40 nm (N40) within the BL assuming surface-area condensation compared to mass-distribution net condensation yielded a global increase of 11% but exceeded 100% in biogenically active regions. The percent change in N40 within the BL with the inclusion of the additional 100 Tg SOAyr(-1) compared to the base simulation solely with biogenic SOA emissions (19 Tg yr-1) both using surface area condensation yielded a global increase of 13.7 %, but exceeded 50% in regions with large CO emissions. The inclusion of two different GRPs in the additional-SOA case both yielded a global increase in N40 of < 1 %, however exceeded 5% in some locations in the most extreme case. All of the model simulations were compared to measured data obtained from diverse locations around the globe and the results confirmed a decrease in the model-measurement bias and improved slope for comparing modeled to measured CCN number concentration when non-volatile SOA was assumed and the extra SOA was included.
  •  
3.
  • Eckhardt, S., et al. (författare)
  • The influence of cruise ship emissions on air pollution in Svalbard - a harbinger of a more polluted Arctic?
  • 2013
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 13:16, s. 8401-8409
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study we have analyzed whether tourist cruise ships have an influence on measured sulfur dioxide (SO2), ozone (O-3), Aitken mode particle and equivalent black carbon (EBC) concentrations at Ny Alesund and Zeppelin Mountain on Svalbard in the Norwegian Arctic during summer. We separated the measurement data set into periods when ships were present and periods when ships were not present in the Kongsfjord area, according to a long-term record of the number of passengers visiting Ny Alesund. We show that when ships with more than 50 passengers cruise in the Kongsfjord, measured daytime mean concentrations of 60 nm particles and EBC in summer show enhancements of 72 and 45 %, respectively, relative to values when ships are not present. Even larger enhancements of 81 and 72% were found for stagnant conditions. In contrast, O-3 concentrations were 5% lower on average and 7% lower under stagnant conditions, due to titration of O-3 with the emitted nitric oxide (NO). The differences between the two data subsets are largest for the highest measured percentiles, while relatively small differences were found for the median concentrations, indicating that ship plumes are sampled relatively infrequently even when ships are present although they carry high pollutant concentrations. We estimate that the ships increased the total summer mean concentrations of SO2, 60 nm particles and EBC by 15, 18 and 11 %, respectively. Our findings have two important implications. Firstly, even at such a remote Arctic observatory as Zeppelin, the measurements can be influenced by tourist ship emissions. Careful data screening is recommended before summertime Zeppelin data is used for data analysis or for comparison with global chemistry transport models. However, Zeppelin remains as one of the most valuable Arctic observatories, as most other Arctic observatories face even larger local pollution problems. Secondly, given landing statistics of tourist ships on Svalbard, it is suspected that large parts of the Svalbard archipelago are affected by cruise ship emissions. Thus, our results may be taken as a warning signal of future pan-Arctic conditions if Arctic shipping becomes more frequent and emission regulations are not strict enough.
  •  
4.
  • Genberg, Johan, et al. (författare)
  • Light-absorbing carbon in Europe - measurement and modelling, with a focus on residential wood combustion emissions
  • 2013
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 13:17, s. 8719-8738
  • Tidskriftsartikel (refereegranskat)abstract
    • The atmospheric concentration of elemental carbon (EC) in Europe during the six-year period 2005-2010 has been simulated with the EMEP MSC-W model. The model bias compared to EC measurements was less than 20% for most of the examined sites. The model results suggest that fossil fuel combustion is the dominant source of EC in most of Europe but that there are important contributions also from residential wood burning during the cold seasons and, during certain episodes, also from open biomass burning (wildfires and agricultural fires). The modelled contributions from open biomass fires to ground level concentrations of EC were small at the sites included in the present study, <3% of the long-term average of EC in PM10. The modelling of this EC source is subject to many uncertainties, and it was likely underestimated for some episodes. EC measurements and modelled EC were also compared to optical measurements of black carbon (BC). The relationships between EC and BC (as given by mass absorption cross section, MAC, values) differed widely between the sites, and the correlation between observed EC and BC is sometimes poor, making it difficult to compare results using the two techniques and limiting the comparability of BC measurements to model EC results. A new bottom-up emission inventory for carbonaceous aerosol from residential wood combustion has been applied. For some countries the new inventory has substantially different EC emissions compared to earlier estimates. For northern Europe the most significant changes are much lower emissions in Norway and higher emissions in neighbouring Sweden and Finland. For Norway and Sweden, comparisons to source-apportionment data from winter campaigns indicate that the new inventory may improve model-calculated EC from wood burning. Finally, three different model setups were tested with variable atmospheric lifetimes of EC in order to evaluate the model sensitivity to the assumptions regarding hygroscopicity and atmospheric ageing of EC. The standard ageing scheme leads to a rapid transformation of the emitted hydrophobic EC to hygroscopic particles, and generates similar results when assuming that all EC is aged at the point of emission. Assuming hydrophobic emissions and no ageing leads to higher EC concentrations. For the more remote sites, the observed EC concentration was in between the modelled EC using standard ageing and the scenario treating EC as hydrophobic. This could indicate too-rapid EC ageing in the model in relatively clean parts of the atmosphere.
  •  
5.
  • Hakkinen, S. A. K., et al. (författare)
  • Semi-empirical parameterization of size-dependent atmospheric nanoparticle growth in continental environments
  • 2013
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 13:15, s. 7665-7682
  • Tidskriftsartikel (refereegranskat)abstract
    • The capability to accurately yet efficiently represent atmospheric nanoparticle growth by biogenic and anthropogenic secondary organics is a challenge for current atmospheric large-scale models. It is, however, crucial to predict nanoparticle growth accurately in order to reliably estimate the atmospheric cloud condensation nuclei (CCN) concentrations. In this work we introduce a simple semi-empirical parameterization for sub-20 nm particle growth that distributes secondary organics to the nanoparticles according to their size and is therefore able to reproduce particle growth observed in the atmosphere. The parameterization includes particle growth by sulfuric acid, secondary organics from monoterpene oxidation (SORG(MT)) and an additional condensable vapor of non-monoterpene organics (background). The performance of the proposed parameterization was investigated using ambient data on particle growth rates in three diameter ranges (1.5-3 nm, 3-7 nm and 7-20 nm). The growth rate data were acquired from particle / air ion number size distribution measurements at six continental sites over Europe. The longest time series of 7 yr (2003-2009) was obtained from a boreal forest site in Hyytiala, Finland, while about one year of data (2008-2009) was used for the other stations. The extensive ambient measurements made it possible to test how well the parameterization captures the seasonal cycle observed in sub-20 nm particle growth and to determine the weighing factors for distributing the SORG(MT) for different sized particles as well as the background mass flux (concentration). Besides the monoterpene oxidation products, background organics with a concentration comparable to SORGMT, around 6x10(7) cm(-3) (consistent with an additional global SOA yield of 100 Tg yr(-1)) was needed to reproduce the observed nanoparticle growth. Simulations with global models suggest that the background could be linked to secondary biogenic organics that are formed in the presence of anthropogenic pollution.
  •  
6.
  • Hallquist, Åsa M., et al. (författare)
  • Particle and gaseous emissions from individual diesel and CNG buses
  • 2013
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 13:10, s. 5337-5350
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study size-resolved particle and gaseous emissions from 28 individual diesel-fuelled and 7 compressed natural gas (CNG)-fuelled buses, selected from an in-use bus fleet, were characterised for real-world dilution scenarios. The method used was based on using CO2 as a tracer of exhaust gas dilution. The particles were sampled by using an extractive sampling method and analysed with high time resolution instrumentation EEPS (10 Hz) and CO2 with a non-dispersive infrared gas analyser (LI-840, LI-COR Inc. 1 Hz). The gaseous constituents (CO, HC and NO) were measured by using a remote sensing device (AccuScan RSD 3000, Environmental System Products Inc.). Nitrogen oxides, NOx, were estimated from NO by using default NO2/NOx ratios from the road vehicle emission model HBEFA3.1. The buses studied were diesel-fuelled Euro III–V and CNG-fuelled Enhanced Environmentally Friendly Vehicles (EEVs) with different after-treatment, including selective catalytic reduction (SCR), exhaust gas recirculation (EGR) and with and without diesel particulate filter (DPF). The primary driving mode applied in this study was accelerating mode. However, regarding the particle emissions also a constant speed mode was analysed. The investigated CNG buses emitted on average a higher number of particles but less mass compared to the diesel-fuelled buses. Emission factors for number of particles (EFPN) were EFPN, DPF = 4.4 ± 3.5 × 1014, EFPN, no DPF = 2.1 ± 1.0 × 1015 and EFPN, CNG = 7.8 ± 5.7 ×1015 kg fuel−1. In the accelerating mode, size-resolved emission factors (EFs) showed unimodal number size distributions with peak diameters of 70–90 nm and 10 nm for diesel and CNG buses, respectively. For the constant speed mode, bimodal average number size distributions were obtained for the diesel buses with peak modes of ~10 nm and ~60 nm. Emission factors for NOx expressed as NO2 equivalents for the diesel buses were on average 27 ± 7 g (kg fuel)−1 and for the CNG buses 41 ± 26 g (kg fuel)−1. An anti-relationship between EFNOx and EFPM was observed especially for buses with no DPF, and there was a positive relationship between EFPM and EFCO.
  •  
7.
  • Hamburger, Thomas, et al. (författare)
  • Long-term in situ observations of biomass burning aerosol at a high altitude station in Venezuela - sources, impacts and interannual variability
  • 2013
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 13:19, s. 9837-9853
  • Tidskriftsartikel (refereegranskat)abstract
    • First long-term observations of South American biomass burning aerosol within the tropical lower free troposphere are presented. The observations were conducted between 2007 and 2009 at a high altitude station (4765 m a.s.l.) on the Pico Espejo, Venezuela. Sub-micron particle volume, number concentrations of primary particles and particle absorption were observed. Orographic lifting and shallow convection leads to a distinct diurnal cycle at the station. It enables measurements within the lower free troposphere during night-time and observations of boundary layer air masses during daytime and at their transitional regions. The seasonal cycle is defined by a wet rainy season and a dry biomass burning season. The particle load of biomass burning aerosol is dominated by fires in the Venezuelan savannah. Increases of aerosol concentrations could not be linked to long-range transport of biomass burning plumes from the Amazon basin or Africa due to effective wet scavenging of particles. Highest particle concentrations were observed within boundary layer air masses during the dry season. Ambient sub-micron particle volume reached 1.4 +/- 1.3 mu m(3) cm(-3), refractory particle number concentrations (at 300 degrees C) 510+/-420 cm(-3) and the absorption coefficient 0.91+/-1.2 Mm(-1). The respective concentrations were lowest within the lower free troposphere during the wet season and averaged at 0.19+/-0.25 mu m(3) cm-3, 150+/-94 cm(-3) and 0.15+/-0.26 Mm(-1). A decrease of particle concentrations during the dry seasons from 2007-2009 could be connected to a decrease in fire activity in the wider region of Venezuela using MODIS satellite observations. The variability of biomass burning is most likely linked to the El Nino-Southern Oscillation (ENSO). Low biomass burning activity in the Venezuelan savannah was observed to follow La Nina conditions, high biomass burning activity followed El Nino conditions.
  •  
8.
  • Huck, P. E., et al. (författare)
  • Semi-empirical models for chlorine activation and ozone depletion in the Antarctic stratosphere : proof of concept
  • 2013
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 13:6, s. 3237-3243
  • Tidskriftsartikel (refereegranskat)abstract
    • Two semi-empirical models were developed for the Antarctic stratosphere to relate the shift of species within total chlorine (Cl-y = HCl + ClONO2 + HOCl + 2 x Cl-2 + 2xCl(2)O(2) + ClO + Cl) into the active forms (here: ClOx = 2xCl(2)O(2) + ClO), and to relate the rate of ozone destruction to ClOx. These two models provide a fast and computationally inexpensive way to describe the inter- and intra-annual evolution of ClOx and ozone mass deficit (OMD) in the Antarctic spring. The models are based on the underlying physics/chemistry of the system and capture the key chemical and physical processes in the Antarctic stratosphere that determine the interaction between climate change and Antarctic ozone depletion. They were developed considering bulk effects of chemical mechanisms for the duration of the Antarctic vortex period and quantities averaged over the vortex area. The model equations were regressed against observations of daytime ClO and OMD providing a set of empirical fit coefficients. Both semi-empirical models are able to explain much of the intra-and inter-annual variability observed in daily ClOx and OMD time series. This proof-of-concept paper outlines the semi-empirical approach to describing the evolution of Antarctic chlorine activation and ozone depletion.
  •  
9.
  • Johnston, Marston Sheldon, 1971, et al. (författare)
  • Diagnosing the average spatio-temporal impact of convective systems – Part 1: A methodology for evaluating climate models
  • 2013
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 13:23, s. 12043-12058
  • Tidskriftsartikel (refereegranskat)abstract
    • An earlier method to determine the mean response of upper-tropospheric water to localised deep convective systems (DC systems) is improved and applied to the EC-Earth climate model. Following Zelinka and Hartmann (2009), several fields related to moist processes and radiation from various satellites are composited with respect to the local maxima in rain rate to determine their spatio-temporal evolution with deep convection in the central Pacific Ocean. Major improvements to the earlier study are the isolation of DC systems in time so as to prevent multiple sampling of the same event, and a revised definition of the mean background state that allows for better characterisation of the DC-system-induced anomalies. The observed DC systems in this study propagate westward at similar to 4 ms(-1). Both the upper-tropospheric relative humidity and the outgoing longwave radiation are substantially perturbed over a broad horizontal extent and for periods > 30 h. The cloud fraction anomaly is fairly constant with height but small maximum can be seen around 200 hPa. The cloud ice water content anomaly is mostly confined to pressures greater than 150 hPa and reaches its maximum around 450 hPa, a few hours after the peak convection. Consistent with the large increase in upper-tropospheric cloud ice water content, albedo increases dramatically and persists about 30 h after peak convection. Applying the compositing technique to EC-Earth allows an assessment of the model representation of DC systems. The model captures the large-scale responses, most notably for outgoing longwave radiation, but there are a number of important differences. DC systems appear to propagate east-ward in the model, suggesting a strong link to Kelvin waves instead of equatorial Rossby waves. The diurnal cycle in the model is more pronounced and appears to trigger new convection further to the west each time. Finally, the modelled ice water content anomaly peaks at pressures greater than 500 hPa and in the upper troposphere between 250 hPa and 500 hPa, there is less ice than the observations and it does not persist as long after peak convection. The modelled upper-tropospheric cloud fraction anomaly, however, is of a comparable magnitude and exhibits a similar longevity as the observations.
  •  
10.
  • Keskinen, H., et al. (författare)
  • Evolution of particle composition in CLOUD nucleation experiments
  • 2013
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 13:11, s. 5587-5600
  • Tidskriftsartikel (refereegranskat)abstract
    • Sulphuric acid, ammonia, amines, and oxidised organics play a crucial role in nanoparticle formation in the atmosphere. In this study, we investigate the composition of nucleated nanoparticles formed from these compounds in the CLOUD (Cosmics Leaving Outdoor Droplets) chamber experiments at CERN (Centre europeen pour la recherche nucleaire). The investigation was carried out via analysis of the particle hygroscopicity, ethanol affinity, oxidation state, and ion composition. Hygroscopicity was studied by a hygroscopic tandem differential mobility analyser and a cloud condensation nuclei counter, ethanol affinity by an organic differential mobility analyser and particle oxidation level by a high-resolution time-of-flight aerosol mass spectrometer. The ion composition was studied by an atmospheric pressure interface time-of-flight mass spectrometer. The volume fraction of the organics in the particles during their growth from sizes of a few nanometers to tens of nanometers was derived from measured hygroscopicity assuming the Zdanovskii-Stokes-Robinson relationship, and compared to values gained from the spectrometers. The ZSR-relationship was also applied to obtain the measured ethanol affinities during the particle growth, which were used to derive the volume fractions of sulphuric acid and the other inorganics (e. g. ammonium salts). In the presence of sulphuric acid and ammonia, particles with a mobility diameter of 150 nm were chemically neutralised to ammonium sulphate. In the presence of oxidation products of pinanediol, the organic volume fraction of freshly nucleated particles increased from 0.4 to similar to 0.9, with an increase in diameter from 2 to 63 nm. Conversely, the sulphuric acid volume fraction decreased from 0.6 to 0.1 when the particle diameter increased from 2 to 50 nm. The results provide information on the composition of nucleated aerosol particles during their growth in the presence of various combinations of sulphuric acid, ammonia, dimethylamine and organic oxidation products.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 28

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy