SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lyssenko Valeriya) "

Sökning: WFRF:(Lyssenko Valeriya)

  • Resultat 31-40 av 154
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
31.
  • Fedotkina, Olena, et al. (författare)
  • Perinatal famine is associated with excess risk of proliferative retinopathy in patients with type 2 diabetes
  • 2022
  • Ingår i: Acta Ophthalmologica. - : John Wiley & Sons. - 1755-375X .- 1755-3768. ; 100:2, s. e539-e545
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: Intrauterine undernutrition is associated with increased risk of type 2 diabetes. Children born premature or small for gestational age were reported to have abnormal retinal vascularization. However, whether intrauterine famine act as a trigger for diabetes complications, including retinopathy, is unknown. The aim of the current study was to evaluate long-term effects of perinatal famine on the risk of proliferative diabetic retinopathy (PDR).Methods: We studied the risk for PDR among type 2 diabetes patients exposed to perinatal famine in two independent cohorts: the Ukrainian National Diabetes Registry (UNDR) and the Hong Kong Diabetes Registry (HKDR). We analysed individuals born during the Great Famine (the Holodomor, 1932–1933) and the WWII (1941–1945) famine in 101 095 (3601 had PDR) UNDR participants. Among 3021 (251 had PDR) HKDR participants, we studied type 2 diabetes patients exposed to perinatal famine during the WWII Japanese invasion in 1942–1945.Results: During the Holodomor and WWII, perinatal famine was associated with a 1.76-fold (p = 0.019) and 3.02-fold (p = 0.001) increased risk of severe PDR in the UNDR. The risk for PDR was 1.66-fold elevated among individuals born in 1942 in the HKDR (p < 0.05). The associations between perinatal famine and PDR remained statistically significant after corrections for HbA1c in available 18 507 UNDR (padditive interaction < 0.001) and in 3021 HKDR type 2 diabetes patients (p < 0.05).Conclusion: In conclusion, type 2 diabetes patients, exposed to perinatal famine, have increased risk of PDR compared to those without perinatal famine exposure. Further studies are needed to understand the underlying mechanisms and to extend this finding to other diabetes complications.
  •  
32.
  •  
33.
  • Ferrannini, Ele, et al. (författare)
  • Early Metabolic Markers of the Development of Dysglycemia and Type 2 Diabetes and Their Physiological Significance
  • 2013
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 62:5, s. 1730-1737
  • Tidskriftsartikel (refereegranskat)abstract
    • Metabolomic screening of fasting plasma from nondiabetic subjects identified alpha-hydroxybutyrate (alpha-HB) and linoleoyl-glycerophosphocholine (L-GPC) as joint markers of insulin resistance (IR) and glucose intolerance. To test the predictivity of alpha-HB and L-GPC for incident dysglycemia, alpha-HB and L-GPC measurements were obtained in two observational cohorts, comprising 1,261 nondiabetic participants from the Relationship between Insulin Sensitivity and Cardiovascular Disease (RISC) study and 2,580 from the Botnia Prospective Study, with 3-year and 9.5-year follow-up data, respectively. In both cohorts, alpha-HB was a positive correlate and L-GPC a negative correlate of insulin sensitivity, with alpha-HB reciprocally related to indices of beta-cell function derived from the oral glucose tolerance test (OGTT). In follow-up, alpha-HB was a positive predictor (adjusted odds ratios 1.25 [95% CI 1.00-1.60] and 1.26 [1.07-1.48], respectively, for each standard deviation of predictor), and L-GPC was a negative predictor (0.64 [0.48-0.85] and 0.67 [0.54-0.84]) of dysglycemia (RISC) or type 2 diabetes (Botnia), independent of familial diabetes, sex, age, BMI, and fasting glucose. Corresponding areas under the receiver operating characteristic curve were 0.791 (RISC) and 0.783 (Botnia), similar in accuracy when substituting cc-JIB and L-GPC with 2-h OGTT glucose concentrations. When their activity was examined, alpha-JIB inhibited and L-GPC stimulated glucose-induced insulin release in INS-le cells. alpha-JIB and L-GPC are independent predictors of worsening glucose tolerance, physiologically consistent with a joint signature of IR and beta-cell dysfunction. Diabetes 62:1730-1737, 2013
  •  
34.
  • Flannick, Jason, et al. (författare)
  • Assessing the phenotypic effects in the general population of rare variants in genes for a dominant Mendelian form of diabetes
  • 2013
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 45:11, s. 1380-1380
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome sequencing can identify individuals in the general population who harbor rare coding variants in genes for Mendelian disorders1-7 and who may consequently have increased disease risk. Previous studies of rare variants in phenotypically extreme individuals display ascertainment bias and may demonstrate inflated effect-size estimates8-12. We sequenced seven genes for maturity-onset diabetes of the young (MODY) 13 in well-phenotyped population samples14,15 (n = 4,003). We filtered rare variants according to two prediction criteria for disease-causing mutations: reported previously in MODY or satisfying stringent de novo thresholds (rare, conserved and protein damaging). Approximately 1.5% and 0.5% of randomly selected individuals from the Framingham and Jackson Heart Studies, respectively, carry variants from these two classes. However, the vast majority of carriers remain euglycemic through middle age. Accurate estimates of variant effect sizes from population-based sequencing are needed to avoid falsely predicting a substantial fraction of individuals as being at risk for MODY or other Mendelian diseases.
  •  
35.
  • Flannick, Jason, et al. (författare)
  • Data Descriptor : Sequence data and association statistics from 12,940 type 2 diabetes cases and controls
  • 2017
  • Ingår i: Scientific Data. - : Springer Science and Business Media LLC. - 2052-4463. ; 4
  • Tidskriftsartikel (refereegranskat)abstract
    • To investigate the genetic basis of type 2 diabetes (T2D) to high resolution, the GoT2D and T2D-GENES consortia catalogued variation from whole-genome sequencing of 2,657 European individuals and exome sequencing of 12,940 individuals of multiple ancestries. Over 27M SNPs, indels, and structural variants were identified, including 99% of low-frequency (minor allele frequency [MAF] 0.1-5%) non-coding variants in the whole-genome sequenced individuals and 99.7% of low-frequency coding variants in the whole-exome sequenced individuals. Each variant was tested for association with T2D in the sequenced individuals, and, to increase power, most were tested in larger numbers of individuals (> 80% of low-frequency coding variants in similar to ~82 K Europeans via the exome chip, and similar to ~90% of low-frequency non-coding variants in similar to ~44 K Europeans via genotype imputation). The variants, genotypes, and association statistics from these analyses provide the largest reference to date of human genetic information relevant to T2D, for use in activities such as T2D-focused genotype imputation, functional characterization of variants or genes, and other novel analyses to detect associations between sequence variation and T2D.
  •  
36.
  • Flannick, Jason, et al. (författare)
  • Exome sequencing of 20,791 cases of type 2 diabetes and 24,440 controls
  • 2019
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 570:7759, s. 71-76
  • Tidskriftsartikel (refereegranskat)abstract
    • Protein-coding genetic variants that strongly affect disease risk can yield relevant clues to disease pathogenesis. Here we report exome-sequencing analyses of 20,791 individuals with type 2 diabetes (T2D) and 24,440 non-diabetic control participants from 5 ancestries. We identify gene-level associations of rare variants (with minor allele frequencies of less than 0.5%) in 4 genes at exome-wide significance, including a series of more than 30 SLC30A8 alleles that conveys protection against T2D, and in 12 gene sets, including those corresponding to T2D drug targets (P = 6.1 × 10−3) and candidate genes from knockout mice (P = 5.2 × 10−3). Within our study, the strongest T2D gene-level signals for rare variants explain at most 25% of the heritability of the strongest common single-variant signals, and the gene-level effect sizes of the rare variants that we observed in established T2D drug targets will require 75,000–185,000 sequenced cases to achieve exome-wide significance. We propose a method to interpret these modest rare-variant associations and to incorporate these associations into future target or gene prioritization efforts. © 2019, The Author(s), under exclusive licence to Springer Nature Limited.
  •  
37.
  • Fuchsberger, Christian, et al. (författare)
  • The genetic architecture of type 2 diabetes
  • 2016
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 536:7614, s. 41-47
  • Tidskriftsartikel (refereegranskat)abstract
    • The genetic architecture of common traits, including the number, frequency, and effect sizes of inherited variants that contribute to individual risk, has been long debated. Genome-wide association studies have identified scores of common variants associated with type 2 diabetes, but in aggregate, these explain only a fraction of the heritability of this disease. Here, to test the hypothesis that lower-frequency variants explain much of the remainder, the GoT2D and T2D-GENES consortia performed whole-genome sequencing in 2,657 European individuals with and without diabetes, and exome sequencing in 12,940 individuals from five ancestry groups. To increase statistical power, we expanded the sample size via genotyping and imputation in a further 111,548 subjects. Variants associated with type 2 diabetes after sequencing were overwhelmingly common and most fell within regions previously identified by genome-wide association studies. Comprehensive enumeration of sequence variation is necessary to identify functional alleles that provide important clues to disease pathophysiology, but large-scale sequencing does not support the idea that lower-frequency variants have a major role in predisposition to type 2 diabetes.
  •  
38.
  • Garg, Gaurav, et al. (författare)
  • Glucose-dependent insulinotropic polypeptide (GIP) and GIP receptor (GIPR) genes : An association analysis of polymorphisms and bone in young and elderly women
  • 2016
  • Ingår i: Bone Reports. - : Elsevier BV. - 2352-1872. ; 4, s. 23-27
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: The gastro-intestinal hormone glucose-dependent insulinotropic polypeptide (GIP) potentiates glucose-induced insulin secretion, with bone anabolic effects through GIP receptor (GIPR) in animal models. We explore its potential in humans by analyzing association between polymorphisms (SNPs) in the GIP and GIPR genes with bone phenotypes in young and elderly women. Methods: Association between GIP (rs2291725) and GIPR (rs10423928) and BMD, bone mineral content (BMC), bone microarchitecture, fracture and body composition was analyzed in the OPRA (75y, n. =. 1044) and PEAK-25 (25y; n. =. 1061) cohorts and serum-GIP in OPRA. Results: The GIP receptor AA-genotype was associated with lower ultrasound values in young women (BUA p=0.011; SI p=0.030), with no association to bone phenotypes in the elderly. In the elderly, the GIP was associated with lower ultrasound (GG vs. AA; SOS padj=0.021) and lower femoral neck BMD and BMC after adjusting for fat mass (padj=0.016 and padj=0.03). In young women, neither GIPR nor GIP associated with other bone phenotypes including spine trabecular bone score. In the elderly, neither SNP associated with fracture. GIP was associated with body composition only in Peak-25; GIPR was not associated with body composition in either cohort. Serum-GIP levels (in elderly) were not associated with bone phenotypes, however lower levels were associated with the GIPR A-allele (β=-6.93; padj=0.03). Conclusions: This first exploratory association study between polymorphisms in GIP and GIPR in relation to bone phenotypes and serum-GIP in women at different ages indicates a possible, albeit complex link between glucose metabolism genes and bone, while recognizing that further studies are warranted.
  •  
39.
  • Gaulton, Kyle J, et al. (författare)
  • Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci.
  • 2015
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 47:12, s. 1415-1415
  • Tidskriftsartikel (refereegranskat)abstract
    • We performed fine mapping of 39 established type 2 diabetes (T2D) loci in 27,206 cases and 57,574 controls of European ancestry. We identified 49 distinct association signals at these loci, including five mapping in or near KCNQ1. 'Credible sets' of the variants most likely to drive each distinct signal mapped predominantly to noncoding sequence, implying that association with T2D is mediated through gene regulation. Credible set variants were enriched for overlap with FOXA2 chromatin immunoprecipitation binding sites in human islet and liver cells, including at MTNR1B, where fine mapping implicated rs10830963 as driving T2D association. We confirmed that the T2D risk allele for this SNP increases FOXA2-bound enhancer activity in islet- and liver-derived cells. We observed allele-specific differences in NEUROD1 binding in islet-derived cells, consistent with evidence that the T2D risk allele increases islet MTNR1B expression. Our study demonstrates how integration of genetic and genomic information can define molecular mechanisms through which variants underlying association signals exert their effects on disease.
  •  
40.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 31-40 av 154
Typ av publikation
tidskriftsartikel (133)
konferensbidrag (17)
forskningsöversikt (3)
bokkapitel (1)
Typ av innehåll
refereegranskat (152)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Lyssenko, Valeriya (154)
Groop, Leif (128)
Tuomi, Tiinamaija (44)
Nilsson, Peter (33)
Isomaa, Bo (31)
Almgren, Peter (28)
visa fler...
Laakso, Markku (28)
McCarthy, Mark I (28)
Kuusisto, Johanna (26)
Boehnke, Michael (26)
Jonsson, Anna (25)
Tuomilehto, Jaakko (22)
Prokopenko, Inga (22)
Jackson, Anne U. (22)
Lind, Lars (21)
Wareham, Nicholas J. (21)
Langenberg, Claudia (21)
Grallert, Harald (21)
Gieger, Christian (19)
Altshuler, David (19)
Ahlqvist, Emma (18)
Ladenvall, Claes (18)
Orho-Melander, Marju (18)
Hansen, Torben (18)
Barroso, Ines (18)
Frayling, Timothy M (18)
Lindgren, Cecilia M. (18)
Melander, Olle (17)
Pedersen, Oluf (17)
Mohlke, Karen L (17)
Ingelsson, Erik (17)
Palmer, Colin N. A. (17)
Morris, Andrew D (17)
Illig, Thomas (17)
Collins, Francis S. (17)
Salomaa, Veikko (16)
Thorleifsson, Gudmar (16)
Stefansson, Kari (16)
Meigs, James B. (16)
Isomaa, B. (15)
Thorsteinsdottir, Un ... (15)
Loos, Ruth J F (15)
Bonnycastle, Lori L. (15)
Steinthorsdottir, Va ... (15)
Hattersley, Andrew T (14)
Walker, Mark (14)
Froguel, Philippe (14)
Dupuis, Josée (14)
Voight, Benjamin F. (14)
Morris, Andrew P. (14)
visa färre...
Lärosäte
Lunds universitet (151)
Karolinska Institutet (31)
Uppsala universitet (29)
Umeå universitet (18)
Göteborgs universitet (15)
Stockholms universitet (2)
visa fler...
Chalmers tekniska högskola (2)
Högskolan Dalarna (2)
Malmö universitet (1)
visa färre...
Språk
Engelska (150)
Finska (2)
Svenska (1)
Franska (1)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (151)
Naturvetenskap (4)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy