SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "hsv:(NATURVETENSKAP) hsv:(Geovetenskap och miljövetenskap) hsv:(Meteorologi och atmosfärforskning) "

Sökning: hsv:(NATURVETENSKAP) hsv:(Geovetenskap och miljövetenskap) hsv:(Meteorologi och atmosfärforskning)

  • Resultat 41-50 av 3553
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
41.
  • Qiao, K., et al. (författare)
  • Size-resolved effective density of submicron particles during summertime in the rural atmosphere of Beijing, China
  • 2018
  • Ingår i: Journal of Environmental Sciences. - : Elsevier BV. - 1001-0742. ; 73, s. 69-77
  • Tidskriftsartikel (refereegranskat)abstract
    • Particle density is an important physical property of atmospheric particles. The information on high time-resolution size-resolved particle density is essential for understanding the atmospheric physical and chemical aging processes of aerosols particles. In the present study, a centrifugal particle mass analyzer (CPMA) combined with a differential mobility analyzer (DMA) was deployed to determine the size-resolved effective density of 50 to 350 nm particles at a rural site of Beijing during summer 2016. The measured particle effective densities decreased with increasing particle sizes and ranged from 1.43 to 1.55 g/cm(3), on average. The effective particle density distributions were dominated by a mode peaked at around 1.5 g/cm(3) for 50 to 350 nm particles. Extra modes with peaks at 1.0, 0.8, and 0.6 g/cm(3) for 150, 240, and 350 nm particles, which might be freshly emitted soot particles, were observed during intensive primary emissions episodes. The particle effective densities showed a diurnal variation pattern, with higher values during daytime. A case study showed that the effective density of Aitken mode particles during the new particle formation (NPF) event decreased considerably, indicating the significant contribution of organics to new particle growth. (C) 2018 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V.
  •  
42.
  • Salvador, Christian Mark, 1989, et al. (författare)
  • Ambient nitro-aromatic compounds - biomass burning versus secondary formation in rural China
  • 2021
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 21:3, s. 1389-1406
  • Tidskriftsartikel (refereegranskat)abstract
    • Nitro-aromatic compounds (NACs) were measured hourly at a rural site in China during wintertime to monitor the changes due to local and regional impacts of biomass burning (BB). Concurrent and continuous measurements of the concentrations of 16 NACs in the gas and particle phases were performed with a time-of-flight chemical ionization mass spectrometer (CIMS) equipped with a Filter Inlet for Gases and AEROsols (FIGAERO) unit using iodide as the reagent ion. NACs accounted for <2 % of the mass concentration of organic matter (OM) and total particulate matter (PM), but the total particle mass concentrations of these compounds can reach as high as 1000 ng m(-3) (299 ng m(-3) avg), suggesting that they may contribute significantly to the radiative forcing effects of atmospheric particles. Levels of gas-phase NACs were highest during the daytime (15:00-16:00 local time, LT), with a smaller night-time peak around 20:00LT. Box-model simulations showed that this occurred because the rate of NAC production from gas-phase sources exceeded the rate of loss, which occurred mainly via the OH reaction and to a lesser degree via photolysis. Data gathered during extended periods with high contributions from primary BB sources (resulting in 40 %-60 % increases in NAC concentrations) were used to characterize individual NACs with respect to gas-particle partitioning and the contributions of regional secondary processes (i.e. photochemical smog). On days without extensive BB, secondary formation was the dominant source of NACs, and NAC levels correlated strongly with the ambient ozone concentration. Analyses of individual NACs in the regionally aged plumes sampled on these days allowed precursors such as phenol and catechol to be linked to their NAC derivatives (i.e. nitrophenol and nitrocatechol). Correlation analysis using the high time resolution data and box-model simulation results constrained the relationships between these compounds and demonstrated the contribution of secondary formation processes. Furthermore, 13 of 16 NACS were classified according to primary or secondary formation process. Primary emission was the dominant source (accounting for 60 %-70 % of the measured concentrations) of 5 of the 16 studied NACs, but secondary formation was also a significant source. Photochemical smog thus has important effects on brown carbon levels even during wintertime periods dominated by primary air pollution in rural China.
  •  
43.
  • Saunois, M., et al. (författare)
  • The global methane budget 2000–2012
  • 2016
  • Ingår i: Earth System Science Data. - : Copernicus GmbH. - 1866-3508 .- 1866-3516. ; 8:2, s. 697-751
  • Tidskriftsartikel (refereegranskat)abstract
    • The global methane (CH4) budget is becoming an increasingly important component for managing realistic pathways to mitigate climate change. This relevance, due to a shorter atmospheric lifetime and a stronger warming potential than carbon dioxide, is challenged by the still unexplained changes of atmospheric CH4 over the past decade. Emissions and concentrations of CH4 are continuing to increase, making CH4 the second most important human-induced greenhouse gas after carbon dioxide. Two major difficulties in reducing uncertainties come from the large variety of diffusive CH4 sources that overlap geographically, and from the destruction of CH4 by the very short-lived hydroxyl radical (OH). To address these difficulties, we have established a consortium of multi-disciplinary scientists under the umbrella of the Global Carbon Project to synthesize and stimulate research on the methane cycle, and producing regular (∼ biennial) updates of the global methane budget. This consortium includes atmospheric physicists and chemists, biogeochemists of surface and marine emissions, and socio-economists who study anthropogenic emissions. Following Kirschke et al. (2013), we propose here the first version of a living review paper that integrates results of top-down studies (exploiting atmospheric observations within an atmospheric inverse-modelling framework) and bottom-up models, inventories and data-driven approaches (including process-based models for estimating land surface emissions and atmospheric chemistry, and inventories for anthropogenic emissions, data-driven extrapolations). For the 2003–2012 decade, global methane emissions are estimated by top-down inversions at 558 Tg CH4 yr−1, range 540–568. About 60 % of global emissions are anthropogenic (range 50–65 %). Since 2010, the bottom-up global emission inventories have been closer to methane emissions in the most carbon-intensive Representative Concentrations Pathway (RCP8.5) and higher than all other RCP scenarios. Bottom-up approaches suggest larger global emissions (736 Tg CH4 yr−1, range 596–884) mostly because of larger natural emissions from individual sources such as inland waters, natural wetlands and geological sources. Considering the atmospheric constraints on the top-down budget, it is likely that some of the individual emissions reported by the bottom-up approaches are overestimated, leading to too large global emissions. Latitudinal data from top-down emissions indicate a predominance of tropical emissions (∼ 64 % of the global budget, < 30° N) as compared to mid (∼ 32 %, 30–60° N) and high northern latitudes (∼ 4 %, 60–90° N). Top-down inversions consistently infer lower emissions in China (∼ 58 Tg CH4 yr−1, range 51–72, −14 %) and higher emissions in Africa (86 Tg CH4 yr−1, range 73–108, +19 %) than bottom-up values used as prior estimates. Overall, uncertainties for anthropogenic emissions appear smaller than those from natural sources, and the uncertainties on source categories appear larger for top-down inversions than for bottom-up inventories and models. The most important source of uncertainty on the methane budget is attributable to emissions from wetland and other inland waters. We show that the wetland extent could contribute 30–40 % on the estimated range for wetland emissions. Other priorities for improving the methane budget include the following: (i) the development of process-based models for inland-water emissions, (ii) the intensification of methane observations at local scale (flux measurements) to constrain bottom-up land surface models, and at regional scale (surface networks and satellites) to constrain top-down inversions, (iii) improvements in the estimation of atmospheric loss by OH, and (iv) improvements of the transport models integrated in top-down inversions. The data presented here can be downloaded from the Carbon Dioxide Information Analysis Center (http://doi.org/10.3334/CDIAC/GLOBAL_METHANE_BUDGET_2016_V1.1) and the Global Carbon Project.
  •  
44.
  • Strandberg, Gustav, et al. (författare)
  • Regional climate model simulations for Europe at 6 and 0.2 k BP : sensitivity to changes in anthropogenic deforestation
  • 2014
  • Ingår i: Climate of the Past. - : Copernicus GmbH. - 1814-9324 .- 1814-9332. ; 10:2, s. 661-680
  • Tidskriftsartikel (refereegranskat)abstract
    • This study aims to evaluate the direct effects of anthropogenic deforestation on simulated climate at two contrasting periods in the Holocene, similar to 6 and similar to 0.2 k BP in Europe. We apply We apply the Rossby Centre regional climate model RCA3, a regional climate model with 50 km spatial resolution, for both time periods, considering three alternative descriptions of the past vegetation: (i) potential natural vegetation (V) simulated by the dynamic vegetation model LPJ-GUESS, (ii) potential vegetation with anthropogenic land use (deforestation) from the HYDE3.1 (History Database of the Global Environment) scenario (V + H3.1), and (iii) potential vegetation with anthropogenic land use from the KK10 scenario (V + KK10). The climate model results show that the simulated effects of deforestation depend on both local/regional climate and vegetation characteristics. At similar to 6 k BP the extent of simulated deforestation in Europe is generally small, but there are areas where deforestation is large enough to produce significant differences in summer temperatures of 0.5-1 degrees C. At similar to 0.2 k BP, extensive deforestation, particularly according to the KK10 model, leads to significant temperature differences in large parts of Europe in both winter and summer. In winter, deforestation leads to lower temperatures because of the differences in albedo between forested and unforested areas, particularly in the snow-covered regions. In summer, deforestation leads to higher temperatures in central and eastern Europe because evapotranspiration from unforested areas is lower than from forests. Summer evaporation is already limited in the southernmost parts of Europe under potential vegetation conditions and, therefore, cannot become much lower. Accordingly, the albedo effect dominates in southern Europe also in summer, which implies that deforestation causes a decrease in temperatures. Differences in summer temperature due to deforestation range from -1 degrees C in south-western Europe to +1 degrees C in eastern Europe. The choice of anthropogenic land-cover scenario has a significant influence on the simulated climate, but uncertainties in palaeoclimate proxy data for the two time periods do not allow for a definitive discrimination among climate model results.
  •  
45.
  • Tang, R., et al. (författare)
  • Increasing terrestrial ecosystem carbon release in response to autumn cooling and warming
  • 2022
  • Ingår i: Nature Climate Change. - : Springer Science and Business Media LLC. - 1758-678X .- 1758-6798. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite overall warming, many regions in the Northern Hemisphere have been cooling in autumn. This cooling resulted in an increasing release of net CO2 2004-2018 as primary production decreased more than respiration in cooling and respiration increased more than production in warming areas. Part of the Northern Hemisphere has experienced widespread autumn cooling during the most recent decades despite overall warming, but how this contrasting temperature change has influenced the ecosystem carbon exchange remains unclear. Here, we show that autumn cooling has occurred over about half of the area north of 25 degrees N since 2004, producing a weak cooling trend over the period 2004-2018. Multiple lines of evidence suggest an increasing net CO2 release in autumn during 2004-2018. In cooling areas, the increasing autumn CO2 release is due to the larger decrease of gross primary productivity (GPP) growth than total ecosystem respiration (TER) growth suppressed by cooling. In the warming areas, TER increased more than GPP because the warming and wetting conditions are more favourable for TER growth than GPP increase. Despite the opposite temperature trends, there has been a systematic increase in ecosystem carbon release across the Northern Hemisphere middle and high latitudes.
  •  
46.
  • Tsiligiannis, Epameinondas, et al. (författare)
  • Effect of NOx on 1,3,5-trimethylbenzene (TMB) oxidation product distribution and particle formation
  • 2019
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 19:23
  • Tidskriftsartikel (refereegranskat)abstract
    • Secondary organic aerosol (SOA) represents a significant fraction of the tropospheric aerosol and its precursors are volatile organic compounds (VOCs). Anthropogenic VOCs (AVOC) dominate the VOC budget in many urban areas with 1,3,5-trimethylbenzene (TMB) being among the most reactive aromatic AVOCs. TMB formed highly oxygenated organic molecules (HOMs) in an NOx-free environment, which could contribute to new particle formation (NPF) depending on oxidation conditions where elevated OH oxidation enhanced particle formation. The experiments were performed in an oxidation flow reactor, the Go:PAM unit, under controlled OH oxidation conditions. By addition of NOx to the system we investigated the effect of NOx on particle formation and on the product distribution. We show that the formation of HOMs, and especially HOM accretion products, strongly varies with NOx conditions. We observe a suppression of HOM and particle formation with increasing NOx/ΔTMB ratio and an increase in the formation of organonitrates (ONs) mostly at the expense of HOM accretion products. We propose reaction mechanisms and pathways that explain the formation and observed product distributions with respect to oxidation conditions. We hypothesise that, based on our findings from TMB oxidation studies, aromatic AVOCs may not contribute significantly to NPF under typical NOx/AVOC conditions found in urban atmospheres.
  •  
47.
  • Wang, Xuan, et al. (författare)
  • Effects of Anthropogenic Chlorine on PM2.5 and Ozone Air Quality in China
  • 2020
  • Ingår i: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 54:16, s. 9908-9916
  • Tidskriftsartikel (refereegranskat)abstract
    • China has large anthropogenic chlorine emissions from agricultural fires, residential biofuel, waste incineration, coal combustion, and industrial processes. Here we quantify the effects of chlorine on fine particulate matter (PM2.5) and ozone air quality across China by using the GEOS-Chem chemical transport model with comprehensive anthropogenic emissions and detailed representation of gas-phase and heterogeneous chlorine chemistry. Comparison of the model to observed ClNO2, HCl, and particulate Cl- concentrations shows that reactive chlorine in China is mainly anthropogenic, unlike in other continental regions where it is mostly of marine origin. The model is successful in reproducing observed concentrations and their distributions, lending confidence in the anthropogenic chlorine emission estimates and the resulting chemistry. We find that anthropogenic chlorine emissions increase total inorganic PM2.5 by as much as 3.2 μg m-3 on an annual mean basis through the formation of ammonium chloride, partly compensated by a decrease of nitrate because ClNO2 formation competes with N2O5 hydrolysis. Annual mean MDA8 surface ozone increases by up to 1.9 ppb, mainly from ClNO2 chemistry, while reactivities of volatile organic compounds increase (by up to 48% for ethane). We find that a sufficient representation of chlorine chemistry in air quality models can be obtained from consideration of HCl/Cl- thermodynamics and ClNO2 chemistry, because other more complicated aspects of chlorine chemistry have a relatively minor effect.
  •  
48.
  • Wang, Y. J., et al. (författare)
  • Comparative Study of Particulate Organosulfates in Contrasting Atmospheric Environments: Field Evidence for the Significant Influence of Anthropogenic Sulfate and NOx
  • 2020
  • Ingår i: Environmental Science & Technology Letters. - : American Chemical Society (ACS). - 2328-8930. ; 7:11, s. 787-794
  • Tidskriftsartikel (refereegranskat)abstract
    • Organosulfates (OSs) are an important group of secondary organic aerosols, but the key influential factors of their formation in polluted atmospheres are not well understood. In this study, we monitored particulate OSs (carboxy OSs, hydroxyacetone sulfate, and isoprene- and monoterpene-derived OSs) at an urban site and a regional site in Beijing and examined their compositions and formation pathways under contrasting atmospheric conditions. The quantified OSs were most abundant in the summer at the regional site due to higher biogenic emissions and favorable formation conditions (higher aerosol acidity and humidity), followed by urban summer and winter conditions. Larger fractions of inorganic sulfate were converted to organosulfur when sulfate was less abundant. This implies that OSs would play more important roles in aerosol properties as the decline of sulfate. Monoterpene-derived nitrooxy-OSs were enhanced via NO3 oxidation in the summer under high-NOx conditions at night, while the day-night variations in the winter were not as obvious. Among isoprene-OSs, IEPOX (isoprene epoxydiols)-OS formation was clearly suppressed under high-NOx conditions, while other isoprene-OSs that are favored under high-NOx conditions showed increasing formation with NOx. The results highlight that isoprene-OS formation pathways in polluted atmospheres could be different from the IEPOX-dominated regions reported for the low-NOx environments in the literature.
  •  
49.
  • Wu, R. R., et al. (författare)
  • Molecular composition and volatility of multi-generation products formed from isoprene oxidation by nitrate radical
  • 2021
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 21:13, s. 10799-10824
  • Tidskriftsartikel (refereegranskat)abstract
    • Isoprene oxidation by nitrate radical (NO3) is a potentially important source of secondary organic aerosol (SOA). It is suggested that the second or later-generation products are the more substantial contributors to SOA. However, there are few studies investigating the multi-generation chemistry of isoprene-NO3 reaction, and information about the volatility of different isoprene nitrates, which is essential to evaluate their potential to form SOA and determine their atmospheric fate, is rare. In this work, we studied the reaction between isoprene and NO3 in the SAPHIR chamber (Julich) under near-atmospheric conditions. Various oxidation products were measured by a high-resolution time-offlight chemical ionization mass spectrometer using Br as the reagent ion. Most of the products detected are organic nitrates, and they are grouped into monomers (C-4 and C-5 products) and dimers (C-10 products) with 1-3 nitrate groups according to their chemical composition. Most of the observed products match expected termination products observed in previous studies, but some compounds such as monomers and dimers with three nitrogen atoms were rarely reported in the literature as gas-phase products from isoprene oxidation by NO3. Possible formation mechanisms for these compounds are proposed. The multi-generation chemistry of isoprene and NO3 is characterized by taking advantage of the time behavior of different products. In addition, the vapor pressures of diverse isoprene nitrates are calculated by different parametrization methods. An estimation of the vapor pressure is also derived from their condensation behavior. According to our results, isoprene monomers belong to intermediate-volatility or semi-volatile organic compounds and thus have little effect on SOA formation. In contrast, the dimers are expected to have low or extremely low volatility, indicating that they are potentially substantial contributors to SOA. However, the monomers constitute 80% of the total explained signals on average, while the dimers contribute less than 2 %, suggesting that the contribution of isoprene NO3 oxidation to SOA by condensation should be low under atmospheric conditions. We expect a SOA mass yield of about 5% from the wall-loss- and dilution-corrected mass concentrations, assuming that all of the isoprene dimers in the low- or extremely low-volatility organic compound (LVOC or ELVOC) range will condense completely.
  •  
50.
  • Zhao, D. F., et al. (författare)
  • Size-dependent hygroscopicity parameter (κ) and chemical composition of secondary organic cloud condensation nuclei
  • 2015
  • Ingår i: Geophysical Research Letters. - 1944-8007. ; 42:24
  • Tidskriftsartikel (refereegranskat)abstract
    • Secondary organic aerosol components (SOA) contribute significantly to the activation of cloud condensation nuclei (CCN) in the atmosphere. The CCN activity of internally mixed submicron SOA particles is often parameterized assuming a size-independent single-hygroscopicity parameter κ. In the experiments done in a large atmospheric reactor (SAPHIR, Simulation of Atmospheric PHotochemistry In a large Reaction chamber, Jülich), we consistently observed size-dependent κ and particle composition for SOA from different precursors in the size range of 50 nm–200 nm. Smaller particles had higher κ and a higher degree of oxidation, although all particles were formed from the same reaction mixture. Since decreasing volatility and increasing hygroscopicity often covary with the degree of oxidation, the size dependence of composition and hence of CCN activity can be understood by enrichment of higher oxygenated, low-volatility hygroscopic compounds in smaller particles. Neglecting the size dependence of κ can lead to significant bias in the prediction of the activated fraction of particles during cloud formation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 41-50 av 3553
Typ av publikation
tidskriftsartikel (2628)
konferensbidrag (363)
doktorsavhandling (198)
rapport (112)
annan publikation (90)
bokkapitel (59)
visa fler...
forskningsöversikt (49)
licentiatavhandling (41)
bok (8)
samlingsverk (redaktörskap) (1)
konstnärligt arbete (1)
proceedings (redaktörskap) (1)
patent (1)
recension (1)
visa färre...
Typ av innehåll
refereegranskat (2851)
övrigt vetenskapligt/konstnärligt (672)
populärvet., debatt m.m. (26)
Författare/redaktör
Chen, Deliang, 1961 (140)
Murtagh, Donal, 1959 (105)
Tjernström, Michael (95)
Urban, Joachim, 1964 (95)
Eriksson, Patrick, 1 ... (88)
Cooray, Vernon (87)
visa fler...
Rutgersson, Anna (79)
Hallquist, Mattias, ... (70)
Rahman, Mahbubur (68)
Lindberg, Fredrik, 1 ... (67)
Sahlée, Erik (64)
Cooray, Vernon, 1952 ... (57)
Svensson, Gunilla (56)
Pleijel, Håkan, 1958 (54)
Rutgersson, Anna, 19 ... (54)
Elgered, Gunnar, 195 ... (52)
Swietlicki, Erik (51)
Simpson, David, 1961 (45)
Krejci, Radovan (45)
Ekman, Annica M. L. (42)
Messori, Gabriele (42)
Smedman, Ann-Sofi (40)
Gumbel, Jörg (38)
Riipinen, Ilona (36)
Bergström, Hans (36)
Kulmala, Markku (35)
Ström, Johan (34)
Kulmala, M (33)
Caballero, Rodrigo (33)
Walker, K. A. (32)
Hettiarachchi, Pasan (32)
Thorsson, Sofia, 197 ... (32)
Roldin, Pontus (31)
Mellqvist, Johan, 19 ... (31)
Galle, Bo, 1952 (29)
Haas, Rüdiger, 1966 (29)
Holmer, Björn, 1943 (28)
Kristensson, Adam (27)
Ahmad, Mohd Riduan (25)
Körnich, Heiner (25)
Kahnert, Michael, 19 ... (24)
Linderholm, Hans W., ... (23)
Brohede, Samuel, 197 ... (23)
Kasai, Y. (23)
Dupuy, E. (23)
Wiedensohler, A. (22)
Thomson, Erik S (21)
Högström, Ulf (20)
Pettersson, Jan B. C ... (20)
Phillips, Vaughan T. ... (20)
visa färre...
Lärosäte
Stockholms universitet (938)
Chalmers tekniska högskola (813)
Uppsala universitet (764)
Göteborgs universitet (629)
Lunds universitet (437)
Kungliga Tekniska Högskolan (127)
visa fler...
Sveriges Lantbruksuniversitet (104)
Umeå universitet (73)
Luleå tekniska universitet (57)
IVL Svenska Miljöinstitutet (23)
Linköpings universitet (20)
VTI - Statens väg- och transportforskningsinstitut (18)
Karolinska Institutet (13)
RISE (12)
Örebro universitet (7)
Linnéuniversitetet (7)
Blekinge Tekniska Högskola (7)
Högskolan i Skövde (6)
Naturvårdsverket (5)
Mittuniversitetet (5)
Högskolan i Gävle (4)
Högskolan Dalarna (4)
Naturhistoriska riksmuseet (3)
Högskolan i Halmstad (1)
Högskolan i Borås (1)
visa färre...
Språk
Engelska (3447)
Svenska (93)
Odefinierat språk (9)
Tyska (1)
Norska (1)
Finska (1)
visa fler...
Kinesiska (1)
visa färre...
Forskningsämne (UKÄ/SCB)
Naturvetenskap (3553)
Teknik (310)
Lantbruksvetenskap (57)
Medicin och hälsovetenskap (33)
Samhällsvetenskap (26)
Humaniora (18)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy