SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Förlin Lars 1950 ) ;lar1:(gu);pers:(Kling Peter 1968)"

Sökning: WFRF:(Förlin Lars 1950 ) > Göteborgs universitet > Kling Peter 1968

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Albertsson, Eva, 1979, et al. (författare)
  • Proteomic analyses indicate induction of hepatic carbonyl reductase/20beta-hydroxysteroid dehydrogenase B in rainbow trout exposed to sewage effluent.
  • 2007
  • Ingår i: Ecotoxicology and environmental safety. - : Elsevier BV. - 0147-6513. ; 68:1, s. 33-9
  • Tidskriftsartikel (refereegranskat)abstract
    • Proteomic analyses were performed to identify regulated liver proteins in rainbow trout (Oncorhynchus mykiss) caged upstream and downstream from a sewage treatment works (STW). Two-dimensional gel electrophoresis, image analysis and FT-ICR mass-spectrometry revealed four regulated protein spots. The three down-regulated spots contained betaine aldehyde dehydrogenase, lactate dehydrogenase and an unidentified protein respectively. The only up-regulated spot consisted of both mitochondrial ATP synthase alpha-subunit and carbonyl reductase/20beta-hydroxysteroid dehydrogenase (CR/20beta-HSD). Further studies using quantitative PCR revealed a 13.5-fold induction of CR/20beta-HSD B mRNA following STW effluent exposure. The CR/20beta-HSD B gene was not regulated by 17alpha-ethinylestradiol, suggesting that its induction downstream from the STW is due to other factors than exposure to estrogens. Image analysis was initially performed on four gels from each group. These analyses suggested 15 regulated spots. However, validation of the 15 spots by increasing the number of replicates confirmed only four regulated spots. Hence, the present study also demonstrates the need for sufficient biological/technical replication in the interpretation of proteomic data.
  •  
3.
  •  
4.
  •  
5.
  • Bresolin de Souza, Karine, et al. (författare)
  • Effects of increased CO2on fish gill and plasma proteome
  • 2014
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 9:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Ocean acidification and warming are both primarily caused by increased levels of atmospheric CO2, and marine organisms are exposed to these two stressors simultaneously. Although the effects of temperature on fish have been investigated over the last century, the long-term effects of moderate CO2 exposure and the combination of both stressors are almost entirely unknown. A proteomics approach was used to assess the adverse physiological and biochemical changes that may occur from the exposure to these two environmental stressors. We analysed gills and blood plasma of Atlantic halibut (Hippoglossus hippoglossus) exposed to temperatures of 12°C (control) and 18°C (impaired growth) in combination with control (400 μatm) or high-CO2 water (1000 μatm) for 14 weeks. The proteomic analysis was performed using two-dimensional gel electrophoresis (2DE) followed by Nanoflow LC-MS/MS using a LTQ-Orbitrap. The high-CO2 treatment induced the up-regulation of immune system-related proteins, as indicated by the up-regulation of the plasma proteins complement component C3 and fibrinogen β chain precursor in both temperature treatments. Changes in gill proteome in the high-CO2 (18°C) group were mostly related to increased energy metabolism proteins (ATP synthase, malate dehydrogenase, malate dehydrogenase thermostable, and fructose-1,6-bisphosphate aldolase), possibly coupled to a higher energy demand. Gills from fish exposed to high-CO 2 at both temperature treatments showed changes in proteins associated with increased cellular turnover and apoptosis signalling (annexin 5, eukaryotic translation elongation factor 1γ, receptor for protein kinase C, and putative ribosomal protein S27). This study indicates that moderate CO2-driven acidification, alone and combined with high temperature, can elicit biochemical changes that may affect fish health. © 2014 Bresolin de Souza et al.
  •  
6.
  • Kling, Peter, 1968, et al. (författare)
  • Gender-specific proteomic responses in zebrafish liver following exposure to a selected mixture of brominated flame retardants
  • 2008
  • Ingår i: Ecotoxicology and Environmental Safety. - : Elsevier Inc. - 1090-2414 .- 0147-6513. ; 71:2, s. 319-27
  • Tidskriftsartikel (refereegranskat)abstract
    • Proteomic effect screening in zebrafish liver was performed to generate hypotheses following exposure (21 days) to a structurally diverse mixture of brominated flame retardants (BFRs). Fish were exposed to two doses (10 and 100 nmol/g feed). Two-dimensional gel-electrophoresis, image analysis and MALDI-TOF mass-spectrometry revealed 13 and 19 significant responses in males and females, respectively. Effects on proteins related to cellular maintenance and stress were observed in both genders. Regulated proteins were gender-specific, but functionally indicated common protective responses (peroxiredoxin 6 and Zgc:92891 in males and transketolase in females) suggesting oxidative stress. Betaine homocysteine methyltransferase (BHMT) was induced in both genders. In addition a female-specific downregulation of ironhomeostatic proteins (iron-regulatory protein 1 and transferrin) were observed. Our proteomic approach revealed novel responses that suggest important gender-specific sensitivity to BFRs that should be considered when interpreting adverse effects of BFRs.
  •  
7.
  • Kling, Peter, 1968, et al. (författare)
  • Proteomic studies in zebrafish liver cells exposed to the brominated flame retardants HBCD and TBBPA.
  • 2009
  • Ingår i: Ecotoxicology and environmental safety. - : Elsevier BV. - 1090-2414 .- 0147-6513. ; 72:7, s. 1985-93
  • Tidskriftsartikel (refereegranskat)abstract
    • Proteomic effect screening in zebrafish liver cells was performed to generate hypotheses regarding single and mixed exposure to the BFRs HBCD and TBBPA. Responses at sublethal exposure were analysed by two-dimensional gel electrophoresis followed by MALDI-TOF and FT-ICR protein identification. Mixing of HBCD and TBBPA at sublethal doses of individual substances seemed to increase toxicity. Proteomic analyses revealed distinct exposure-specific and overlapping responses suggesting novel mechanisms with regard to HBCD and TBBPA exposure. While distinct HBCD responses were related to decreased protein metabolism, TBBPA revealed effects related to protein folding and NADPH production. Overlapping responses suggest increased gluconeogenesis (GAPDH and aldolase) while distinct mixture effects suggest a pronounced NADPH production and changes in proteins related to cell cycle control (prohibitin and crk-like oncogene). We conclude that mixtures containing HBCD and TBBPA may result in unexpected effects highlighting proteomics as a sensitive tool for detecting and hypothesis generation of mixture effects.
  •  
8.
  •  
9.
  • Lennquist, Anna, 1978, et al. (författare)
  • Physiology and mRNA expression in rainbow trout (Oncorhynchus mykiss) after long-term exposure to the new antifoulant medetomidine.
  • 2011
  • Ingår i: Comparative biochemistry and physiology. Toxicology & pharmacology : CBP. - : Elsevier BV. - 1532-0456. ; 154:3, s. 234-41
  • Tidskriftsartikel (refereegranskat)abstract
    • Medetomidine is under evaluation for use as an antifouling agent, and its effects on non-target aquatic organisms are therefore of interest. In this study, rainbow trout was exposed to low (0.5 and 5.0nM) concentrations of medetomidine for up to 54days. Recently we have reported on effects on paleness and melanophore aggregation of medetomidine in these fish. Here, specific growth rates were investigated together with a broad set of physiological parameters including plasma levels of growth hormone (GH), insulin-like growth factor-I (IGF-I) and leptin, glucose and haemoglobin (Hb), hematocrit (Ht), condition factor, liver and heart somatic indexes (LSI, HSI). Hepatic enzyme activities of CYP1A (EROD activity), glutathione S-transferases (GST) and glutathione reductase (GR) were also measured. Additionally, hepatic mRNA expression was analysed through microarray and quantitative PCR in fish sampled after 31days of exposure. Medetomidine at both concentrations significantly lowered blood glucose levels and the higher concentration significantly reduced the LSI. The mRNA expression analysis revealed few differentially expressed genes in the liver and the false discovery rate was high. Taken together, the results suggest that medetomidine at investigated concentrations could interfere with carbohydrate metabolism of exposed fish but without any clear consequences for growth.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy