SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Boerner T.) ;lar1:(cth)"

Sökning: WFRF:(Boerner T.) > Chalmers tekniska högskola

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Tinetti, Giovanna, et al. (författare)
  • The EChO science case
  • 2015
  • Ingår i: Experimental astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 40:2-3, s. 329-391
  • Tidskriftsartikel (refereegranskat)abstract
    • The discovery of almost two thousand exoplanets has revealed an unexpectedly diverse planet population. We see gas giants in few-day orbits, whole multi-planet systems within the orbit of Mercury, and new populations of planets with masses between that of the Earth and Neptune-all unknown in the Solar System. Observations to date have shown that our Solar System is certainly not representative of the general population of planets in our Milky Way. The key science questions that urgently need addressing are therefore: What are exoplanets made of? Why are planets as they are? How do planetary systems work and what causes the exceptional diversity observed as compared to the Solar System? The EChO (Exoplanet Characterisation Observatory) space mission was conceived to take up the challenge to explain this diversity in terms of formation, evolution, internal structure and planet and atmospheric composition. This requires in-depth spectroscopic knowledge of the atmospheres of a large and well-defined planet sample for which precise physical, chemical and dynamical information can be obtained. In order to fulfil this ambitious scientific program, EChO was designed as a dedicated survey mission for transit and eclipse spectroscopy capable of observing a large, diverse and well-defined planet sample within its 4-year mission lifetime. The transit and eclipse spectroscopy method, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allows us to measure atmospheric signals from the planet at levels of at least 10(-4) relative to the star. This can only be achieved in conjunction with a carefully designed stable payload and satellite platform. It is also necessary to provide broad instantaneous wavelength coverage to detect as many molecular species as possible, to probe the thermal structure of the planetary atmospheres and to correct for the contaminating effects of the stellar photosphere. This requires wavelength coverage of at least 0.55 to 11 mu m with a goal of covering from 0.4 to 16 mu m. Only modest spectral resolving power is needed, with R similar to 300 for wavelengths less than 5 mu m and R similar to 30 for wavelengths greater than this. The transit spectroscopy technique means that no spatial resolution is required. A telescope collecting area of about 1 m(2) is sufficiently large to achieve the necessary spectro-photometric precision: for the Phase A study a 1.13 m(2) telescope, diffraction limited at 3 mu m has been adopted. Placing the satellite at L2 provides a cold and stable thermal environment as well as a large field of regard to allow efficient time-critical observation of targets randomly distributed over the sky. EChO has been conceived to achieve a single goal: exoplanet spectroscopy. The spectral coverage and signal-to-noise to be achieved by EChO, thanks to its high stability and dedicated design, would be a game changer by allowing atmospheric composition to be measured with unparalleled exactness: at least a factor 10 more precise and a factor 10 to 1000 more accurate than current observations. This would enable the detection of molecular abundances three orders of magnitude lower than currently possible and a fourfold increase from the handful of molecules detected to date. Combining these data with estimates of planetary bulk compositions from accurate measurements of their radii and masses would allow degeneracies associated with planetary interior modelling to be broken, giving unique insight into the interior structure and elemental abundances of these alien worlds. EChO would allow scientists to study exoplanets both as a population and as individuals. The mission can target super-Earths, Neptune-like, and Jupiter-like planets, in the very hot to temperate zones (planet temperatures of 300-3000 K) of F to M-type host stars. The EChO core science would be delivered by a three-tier survey. The EChO Chemical Census: This is a broad survey of a few-hundred exoplanets, which allows us to explore the spectroscopic and chemical diversity of the exoplanet population as a whole. The EChO Origin: This is a deep survey of a subsample of tens of exoplanets for which significantly higher signal to noise and spectral resolution spectra can be obtained to explain the origin of the exoplanet diversity (such as formation mechanisms, chemical processes, atmospheric escape). The EChO Rosetta Stones: This is an ultra-high accuracy survey targeting a subsample of select exoplanets. These will be the bright "benchmark" cases for which a large number of measurements would be taken to explore temporal variations, and to obtain two and three dimensional spatial information on the atmospheric conditions through eclipse-mapping techniques. If EChO were launched today, the exoplanets currently observed are sufficient to provide a large and diverse sample. The Chemical Census survey would consist of > 160 exoplanets with a range of planetary sizes, temperatures, orbital parameters and stellar host properties. Additionally, over the next 10 years, several new ground- and space-based transit photometric surveys and missions will come on-line (e.g. NGTS, CHEOPS, TESS, PLATO), which will specifically focus on finding bright, nearby systems. The current rapid rate of discovery would allow the target list to be further optimised in the years prior to EChO's launch and enable the atmospheric characterisation of hundreds of planets.
  •  
2.
  • Ghaemi, Hirad, 1980, et al. (författare)
  • CLEAN technique in strip-map SAR for high-quality imaging
  • 2009
  • Ingår i: IEEE Aerospace Conference Proceedings. - 1095-323X. - 9781424426225 ; , s. Art. no. 4839474-
  • Konferensbidrag (refereegranskat)abstract
    • The maximum obtainable resolution of a strip-map synthetic aperture radar (SAR) system can be retained by simply avoiding weighting, or tapering, data samples in the along-track compression process. However, this will lead to hazardous artifacts caused by strong sidelobes of the corresponding adjacent scatterers whose interference might severely weaken the desired targets or even introduce false targets. On the other hand, some residual artifacts, even after tapering process, may still deteriorate the quality (contrast) of the SAR image. These issues can be remedied by applying the so-called CLEAN technique, which can mitigate these ill-effects in strip-map SAR imagery while maintaining the maximum resolution. This, indeed, is carried out as a post processing step, i.e., after the azimuth compression is accomplished, in the SAR system. The objective of this paper is to extend the CLEAN technique to strip-map SAR system to produce high-quality images with a very good along-track resolution. The algorithm is then applied to data from a ground-based circular SAR (CSAR) system to verify its implementation as well as this new application of the CLEAN technique.
  •  
3.
  • Ghaemi, Hirad, 1980, et al. (författare)
  • RELAX-based autofocus algorithm for high-resolution strip-map SAR
  • 2009
  • Ingår i: IEEE National Radar Conference - Proceedings. - 1097-5659. - 9781424428717 ; , s. 1 - 6
  • Konferensbidrag (refereegranskat)abstract
    • This paper addresses the non-iterative quality phase gradient autofocus (QPGA) technique which was originally proposed to remove one-dimensional phase errors in spotlight-mode synthetic aperture radar (SAR) imagery. By enriching the source pool, the method is modified in a way suitable for autofocus in stripmap-mode SAR system with the advantage of being independent of any priori assumptions. Unlike the QPGA the potential candidates, i.e., dominant scatterers located along azimuth in each specific range bin, are automatically selected by exploiting the one-dimensional RELAX algorithm. Furthermore, RELAX is capable of estimating the size of blur window which is, in fact, associated with the Doppler spread of signal spectrum. The corresponding model includes four parameters i.e., complex amplitude, delay, Doppler center and spectral width. The proposed method has been applied to data extracted by a ground-based rotating coherent Doppler radar operating in strip-mapping mode SAR, with the aim of high-resolution clutter detection.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy