SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Zou Bo) ;lar1:(cth)"

Search: WFRF:(Zou Bo) > Chalmers University of Technology

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Beal, Jacob, et al. (author)
  • Robust estimation of bacterial cell count from optical density
  • 2020
  • In: Communications Biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 3:1
  • Journal article (peer-reviewed)abstract
    • Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data.
  •  
2.
  • Li, Guofa, et al. (author)
  • Detection of road traffic participants using cost-effective arrayed ultrasonic sensors in low-speed traffic situations
  • 2019
  • In: Mechanical Systems and Signal Processing. - : Elsevier BV. - 0888-3270 .- 1096-1216. ; 132, s. 535-545
  • Journal article (peer-reviewed)abstract
    • Effective detection of traffic participants is crucial for driver assistance systems. Traffic safety data reveal that the majority of preventable pedestrian fatalities occurred at night. The lack of light at night may cause dysfunction of sensors like cameras. This paper proposes an alternative approach to detect traffic participants using cost-effective arrayed ultrasonic sensors. Candidate features were extracted from the collected episodes of pedestrians, cyclists, and vehicles. A conditional likelihood maximization method based on mutual information was employed to select an optimized subset of features from the candidates. The belonging probability to each group along with time was determined based on the accumulated object type attributes outputted from a support vector machine classifier at each time step. Results showed an overall detection accuracy of 86%, with correct detection rate of pedestrians, cyclists and vehicles around 85.7%, 76.7% and 93.1%, respectively. The time needed for detection was about 0.8 s which could be further shortened when the distance between objects and sensors was shorter. The effectiveness of arrayed ultrasonic sensors on objects detection would provide all-around-the-clock assistance in low-speed situations for driving safety.
  •  
3.
  • Qian, D. P., et al. (author)
  • Modulating molecular aggregation by facile heteroatom substitution of diketopyrrolopyrrole based small molecules for efficient organic solar cells
  • 2015
  • In: Journal of Materials Chemistry A. - : Royal Society of Chemistry (RSC). - 2050-7488 .- 2050-7496. ; 3:48, s. 24349-24357
  • Journal article (peer-reviewed)abstract
    • In conjugated polymers and small molecules of organic solar cells, aggregation induced by intermolecular interactions governs the performance of photovoltaics. However, little attention has been paid to the connection between molecular structure and aggregation within solar cells based on soluble small molecules. Here we demonstrate modulation of intermolecular aggregation of two synthesized molecules through heteroatom substitution to develop an understanding of the role of aggregation in conjugated molecules. Molecule 1 (M1) based on 2-ethylhexyloxy-benzene substituted benzo[1,2-b:4,5-b']dithiophene (BDTP) and diketopyrrolopyrrole (DPP) displays strong aggregation in commonly used organic solvents, which is reduced in molecule 2 (M2) by facile oxygen atom substitution on the BDTP unit confirmed by absorption spectroscopy and optical microscopy, while it successfully maintains molecular planarity and favorable charge transport characteristics. Solar cells based on M2 exhibit more than double the photocurrent of devices based on M1 and yield a power conversion efficiency of 5.5%. A systematic investigation of molecular conformation, optoelectronic properties, molecular packing and crystallinity as well as film morphology reveals structure dependent aggregation responsible for the performance difference between the two conjugated molecules.
  •  
4.
  • Zou, Changfu, 1987, et al. (author)
  • Electrochemical estimation and control for lithium-ion battery health-aware fast charging
  • 2018
  • In: IEEE Transactions on Industrial Electronics. - 0278-0046 .- 1557-9948. ; 65:8, s. 6635-6645
  • Journal article (peer-reviewed)abstract
    • Fast charging strategies have gained an increasing interest toward the convenience of battery applications but may unduly degrade or damage the batteries. To harness these competing objectives, including safety, lifetime, and charging time, this paper proposes a health-aware fast charging strategy synthesized from electrochemical system modeling and advanced control theory. The battery charging problem is formulated in a linear time-varying model predictive control algorithm. In this algorithm, a control-oriented electrochemical-thermal model is developed to predict the system dynamics. Constraints are explicitly imposed on physically meaningful state variables to protect the battery from hazardous operations. A moving horizon estimation algorithm is employed to monitor battery internal state information. Illustrative results demonstrate that the proposed charging strategy is able to largely reduce the charging time from its benchmarks while ensuring the satisfaction of health-related constraints.
  •  
5.
  • Zou, Changfu, 1987, et al. (author)
  • Power capability prediction for lithium-ion batteries using economic nonlinear model predictive control
  • 2018
  • In: Journal of Power Sources. - : Elsevier BV. - 0378-7753. ; 396, s. 580-589
  • Journal article (peer-reviewed)abstract
    • Technical challenges facing determination of battery available power arise from its complicated nonlinear dynamics, input and output constraints, and inaccessible internal states. Available solutions often resorted to open-loop prediction with simplified battery models or linear control algorithms. To resolve these challenges simultaneously, this paper formulates an economic nonlinear model predictive control to forecast a battery's state-of-power. This algorithm is built upon a high-fidelity model that captures nonlinear coupled electrical and thermal dynamics of a lithium-ion battery. Constraints imposed on current, voltage, temperature, and state-of-charge are then taken into account in a systematic fashion. Illustrative results from several different tests over a wide range of conditions demonstrate that the proposed approach is capable of accurately predicting the power capability with the error less than 0.2% while protecting the battery from undesirable reactions. Furthermore, the effects of temperature constraints, prediction horizon, and model accuracy are quantitatively examined. The proposed power prediction algorithm is general and then can be equally applicable to different lithium-ion batteries and cell chemistries where proper mathematical models exist.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view