SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wierzbicka Aneta) ;hsvcat:3"

Sökning: WFRF:(Wierzbicka Aneta) > Medicin och hälsovetenskap

  • Resultat 1-10 av 62
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Nourozi, Behrouz, 1986-, et al. (författare)
  • A systematic review of ventilation solutions for hospital wards : Addressing cross-infection and patient safety
  • 2024
  • Ingår i: Building and Environment. - : Elsevier Ltd. - 0360-1323 .- 1873-684X. ; 247
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite various preventive interventions, nosocomial cross-infection remains a significant challenge in healthcare facilities worldwide. Consequently, prolonged hospitalization, elevated healthcare costs, and mortality rates are major concerns. Proper ventilation has been identified as one of the possible interventions for reducing the risk of cross-infection between patients and healthcare workers in hospital wards by diluting infectious agents and their carrying particles. The use of air cleaners in conjunction with the ventilation system further reduces the concentration of indoor pathogens. This article presents a systematic review of the ventilation solutions employed in hospital wards where pathogen removal performance can be enhanced using air-cleaning techniques while maintaining the thermal comfort of patients and healthcare staff. We provide a comparative analysis of the performance of different ventilation strategies adopted in one-, two-, or multi-bed hospital wards. Additionally, we discuss the parameters that influence the aerosol removal efficiency of ventilation systems and review various air-cleaning technologies that can further complement the ventilation system to reduce contaminant concentrations. Finally, we review and discuss the impact of different ventilation strategies on the perceived thermal comfort of patients and healthcare workers. This study provides insights into the cross-contamination risks associated with various hospital ward setups and the vital role of the ventilation system in reducing the adverse effects of infection risk. The findings of this review will contribute to the development of effective ventilation solutions that ensure improved patient outcomes and the well-being of healthcare workers.
  •  
2.
  •  
3.
  •  
4.
  • Gren, Louise, et al. (författare)
  • Lung function and self-rated symptoms in healthy volunteers after exposure to hydrotreated vegetable oil (HVO) exhaust with and without particles
  • 2022
  • Ingår i: Particle and Fibre Toxicology. - : Springer Science and Business Media LLC. - 1743-8977. ; 19:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Diesel engine exhaust causes adverse health effects. Meanwhile, the impact of renewable diesel exhaust, such as hydrotreated vegetable oil (HVO), on human health is less known. Nineteen healthy volunteers were exposed to HVO exhaust for 3 h in a chamber with a double-blind, randomized setup. Exposure scenarios comprised of HVO exhaust from two modern non-road vehicles with 1) no aftertreatment system ('HVOPM+NOx' PM1: 93 mu g-m(-3), EC: 54 mu g-m(-3), NO: 3.4 ppm, -NO2: 0.6 ppm), 2) an aftertreatment system containing a diesel oxidation catalyst and a diesel particulate filter ('HVONOx' PM1: similar to 1 mu g-m(-3), NO: 2.0 ppm, -NO2: 0.7 ppm) and 3) filtered air (FA) as control. The exposure concentrations were in line with current EU occupational exposure limits (OELs) of NO, -NO2, formaldehyde, polycyclic aromatic hydrocarbons (PAHs), and the future OEL (2023) of elemental carbon (EC). The effect on nasal patency, pulmonary function, and self-rated symptoms were assessed. Calculated predicted lung deposition of HVO exhaust particles was compared to data from an earlier diesel exhaust study. Results: The average total respiratory tract deposition of PM1 during -HVO(PM+ NO)x was 27 mu g-h(-1). The estimated deposition fraction of HVO PM1 was 40-50% higher compared to diesel exhaust PM1 from an older vehicle (earlier study), due to smaller particle sizes of the -HVOPM+ NOx exhaust. Compared to FA, exposure to -HVOPM+ NOx and -HVONOx caused higher incidence of self-reported symptoms (78%, 63%, respectively, vs. 28% for FA, p < 0.03). Especially, exposure to -HVOPM+ NOx showed 40-50% higher eye and throat irritation symptoms. Compared to FA, a decrement in nasal patency was found for the -HVONOx exposures (- 18.1, 95% CI: - 27.3 to - 8.8 L-min(-1), p < 0.001), and for the -HVOPM+ NOx (- 7.4 (- 15.6 to 0.8) L -min(-1), p = 0.08). Overall, no clinically significant change was indicated in the pulmonary function tests (spirometry, peak expiratory flow, forced oscillation technique). Conclusion: Short-term exposure to HVO exhaust concentrations corresponding to EU OELs for one workday did not cause adverse pulmonary function changes in healthy subjects. However, an increase in self-rated mild irritation symptoms, and mild decrease in nasal patency after both HVO exposures, may indicate irritative effects from exposure to HVO exhaust from modern non-road vehicles, with and without aftertreatment systems.
  •  
5.
  • Lovén, Karin, et al. (författare)
  • Effects of cleaning spray use on eyes, airways, and ergonomic load
  • 2023
  • Ingår i: BMC Public Health. - : Springer Science and Business Media LLC. - 1471-2458. ; 23:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundCleaning workers are exposed to chemicals and high physical workload, commonly resulting in airway problems and pain. In this study the response in the upper airways and the physical workload following airborne and ergonomic exposure of cleaning spray was investigated.MethodsA survey was answered by professional cleaning workers to investigate their use of cleaning sprays and the perceived effects on eyes, airways and musculoskeletal pain. A human chamber exposure study was then conducted with 11 professional cleaning workers and 8 non-professional cleaning workers to investigate the airborne exposure, acute effects on eyes and airways, and physical load during cleaning with sprays, foam application and microfiber cloths premoistened with water. All cleaning products used were bleach, chlorine, and ammonia free. The medical assessment included eye and airway parameters, inflammatory markers in blood and nasal lavage, as well as technical recordings of the physical workload.ResultsA high frequency of spray use (77%) was found among the 225 professional cleaning workers that answered the survey. Based on the survey, there was an eight times higher risk (p < 0.001) of self-experienced symptoms (including symptoms in the nose, eyes and throat, coughing or difficulty breathing) when they used sprays compared to when they cleaned with other methods. During the chamber study, when switching from spray to foam, the airborne particle and volatile organic compound (VOC) concentrations showed a decrease by 7 and 2.5 times, respectively. For the whole group, the peak nasal inspiratory flow decreased (-10.9 L/min, p = 0.01) during spray use compared to using only water-premoistened microfiber cloths. These effects were lower during foam use (-4.7 L/min, p = 0.19). The technical recordings showed a high physical workload regardless of cleaning with spray or with water.ConclusionSwitching from a spraying to a foaming nozzle decreases the exposure of both airborne particles and VOCs, and thereby reduces eye and airway effects, and does not increase the ergonomic load. If the use of cleaning products tested in this study, i.e. bleach, chlorine, and ammonia free, cannot be avoided, foam application is preferable to spray application to improve the occupational environment.
  •  
6.
  • Pedersen, Eja, et al. (författare)
  • Tenant perceptions of post-renovation indoor environmental quality in rental housing: improved for some, but not for those reporting health-related symptoms
  • 2020
  • Ingår i: Building and Environment. - : Elsevier BV. - 1873-684X .- 0360-1323. ; 189
  • Tidskriftsartikel (refereegranskat)abstract
    • Much of the 1950–1970s building stock in Sweden and other European countries is being renovated to reduce energy use and for general upgrading. To realize the UN Sustainable Development Goals, the renovations should also improve indoor environmental quality (IEQ). The PEIRE (People-Environment-Indoor-Renovation-Energy) study followed the renovation of a multifamily housing area in Sweden comprising 14 buildings with 323 dwellings in total. We aimed to investigate tenant perception of IEQ changes after the renovation with focus on perceived control of IEQ, recalling of being informed how to control IEQ, and if tenants with self-reported symptoms perceive the changes differently. A post-renovation survey (n = 104, response rate 36%) showed that the renovation increased the proportion of residents experiencing satisfactory thermal comfort and air quality in the winter, as well as improved noise conditions. Perceiving reduced draught in the thermal environment was associated with experiencing being informed and being able to control heat and ventilation. Respondents reporting skin irritation symptoms were less likely than others to perceive any improvements of IEQ factors such as air quality, daylight, noise from installations and neighbours, and periods of excessive heat. Renovations targeting housing sustainability – here, decreasing energy use and mitigating wear and tear while keeping the rents low – could increase tenant perceptions of improved IEQ, especially if factors concerning information and tenants’ ability to control the regulating systems are addressed. Interestingly, results of this study point out that tenants experiencing IEQ-related symptoms may require enhanced IEQ improvements to experience the renovation as satisfactory.
  •  
7.
  • Rasmussen, Berit B, et al. (författare)
  • Emissions of ultrafine particles from five types of candles during steady burn conditions
  • 2021
  • Ingår i: Indoor Air. - : Hindawi Limited. - 0905-6947 .- 1600-0668. ; 31:4, s. 1084-1094
  • Tidskriftsartikel (refereegranskat)abstract
    • Emissions from candles are of concern for indoor air quality. In this work, five different types of pillar candles were burned under steady burn conditions in a new laboratory scale system for repeatable and controlled comparison of candle emissions (temperature ~25°C, relative humidity ~13%, O2 >18%, air exchange rate 1.9 h-1 ). Burn rate, particle number concentrations, mass concentrations, and mode diameters varied between candle types. Based on the results, the burning period was divided in two phases: initial (0-1 h) and stable (1-6 h). Burn rates were in the range 4.4-7.3 and 4.7-7.1 g/h during initial and stable phase, respectively. Relative particle number emissions, mode diameters, and mass concentrations were higher during the initial phase compared to the stable phase for a majority of the candles. We hypothesize that this is due to elevated emissions of wick additives upon ignition of the candle together with a slightly higher burn rate in the initial phase. Experiments at higher relative humidity (~40%) gave similar results with a tendency toward larger particle sizes at the higher relative humidity. Chemical composition with respect to inorganic salts was similar in the emitted particles (dry conditions) compared to the candlewicks, but with variations between different candles.
  •  
8.
  • Wierzbicka, Aneta, et al. (författare)
  • Detailed diesel exhaust characteristics including particle surface area and lung deposited dose for better understanding of health effects in human chamber exposure studies
  • 2014
  • Ingår i: Atmospheric Environment. - : Elsevier BV. - 1352-2310. ; 86, s. 212-219
  • Tidskriftsartikel (refereegranskat)abstract
    • Several diesel exhaust (DE) characteristics, comprising both particle and gas phase, recognized as important when linking with health effects, are not reported in human chamber exposure studies. In order to understand effects of DE on humans there is a need for better characterization of DE when performing exposure studies. The aim of this study was to determine and quantify detailed DE characteristics during human chamber exposure. Additionally to compare to reported DE properties in conducted human exposures. A wide battery of particle and gas phase measurement techniques have been used to provide detailed DE characteristics including the DE particles (DEP) surface area, fraction and dose deposited in the lungs, chemical composition of both particle and gas phase such as NO, NO2, CO, CO2, volatile organic compounds (including aldehydes, benzene, toluene) and polycyclic aromatic hydrocarbons (PAHs). Eyes, nose and throat irritation effects were determined. Exposure conditions with PM1 (<1 mu m) mass concentration 280 mu g m(-3), number concentration 4 x 10(5) cm(-3) and elemental to total carbon fraction of 82% were generated from a diesel vehicle at idling. When estimating the lung deposited dose it was found that using the size dependent effective density (in contrast to assuming unity density) reduced the estimated respiratory dose by 132% by mass. Accounting for agglomerated structure of DEP prevented underestimation of lung deposited dose by surface area by 37% in comparison to assuming spherical particles. Comparison of DE characteristics reported in conducted chamber exposures showed that DE properties vary to a great extent under the same DEP mass concentration and engine load. This highlights the need for detailed and standardized approach for measuring and reporting of DE properties. Eyes irritation effects, most probably caused by aldehydes in the gas phase, as well as nose irritation were observed at exposure levels below current occupational exposure limit values given for exhaust fumes. Reporting detailed DE characteristics that include DEP properties (such as mass and number concentration, size resolved information, surface area, chemical composition, lung deposited dose by number, mass and surface) and detailed gas phase including components known for their carcinogenic and irritation effect (e.g. aldehydes, benzene, PAHs) can help in determination of key parameters responsible for observed health effects and comparison of chamber exposure studies. (C) 2013 The Authors. Published by Elsevier Ltd. All rights reserved.
  •  
9.
  • Ali, Neserin, et al. (författare)
  • Comprehensive proteome analysis of nasal lavage samples after controlled exposure to welding nanoparticles shows an induced acute phase and a nuclear receptor, LXR/RXR, activation that influence the status of the extracellular matrix
  • 2018
  • Ingår i: Clinical Proteomics. - : Springer Science and Business Media LLC. - 1542-6416 .- 1559-0275. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Epidemiological studies have shown that many welders experience respiratory symptoms. During the welding process a large number of airborne nanosized particles are generated, which might be inhaled and deposited in the respiratory tract. Knowledge of the underlying mechanisms behind observed symptoms is still partly lacking, although inflammation is suggested to play a central role. The aim of this study was to investigate the effects of welding fume particle exposure on the proteome expression level in welders suffering from respiratory symptoms, and changes in protein mediators in nasal lavage samples were analyzed. Such mediators will be helpful to clarify the pathomechanisms behind welding fume particle-induced effects. Methods: In an exposure chamber, 11 welders with work-related symptoms in the lower airways during the last month were exposed to mild-steel welding fume particles (1 mg/m3) and to filtered air, respectively, in a double-blind manner. Nasal lavage samples were collected before, immediately after, and the day after exposure. The proteins in the nasal lavage were analyzed with two different mass spectrometry approaches, label-free discovery shotgun LC-MS/MS and a targeted selected reaction monitoring LC-MS/MS analyzing 130 proteins and four in vivo peptide degradation products. Results: The analysis revealed 30 significantly changed proteins that were associated with two main pathways; activation of acute phase response signaling and activation of LXR/RXR, which is a nuclear receptor family involved in lipid signaling. Connective tissue proteins and proteins controlling the degradation of such tissues, including two different matrix metalloprotease proteins, MMP8 and MMP9, were among the significantly changed enzymes and were identified as important key players in the pathways. Conclusion: Exposure to mild-steel welding fume particles causes measurable changes on the proteome level in nasal lavage matrix in exposed welders, although no clinical symptoms were manifested. The results suggested that the exposure causes an immediate effect on the proteome level involving acute phase proteins and mediators regulating lipid signaling. Proteases involved in maintaining the balance between the formation and degradation of extracellular matrix proteins are important key proteins in the induced effects.
  •  
10.
  • Andersen, Christina, et al. (författare)
  • Emissions of soot, PAHs, ultrafine particles, NOx, and other health relevant compounds from stressed burning of candles in indoor air
  • 2021
  • Ingår i: Indoor Air. - : Hindawi Limited. - 0905-6947 .- 1600-0668. ; 31:6, s. 2033-2048
  • Tidskriftsartikel (refereegranskat)abstract
    • Burning candles release a variety of pollutants to indoor air, some of which are of concern for human health. We studied emissions of particles and gases from the stressed burning of five types of pillar candles with different wax and wick compositions. The stressed burning was introduced by controlled fluctuating air velocities in a 21.6 m3 laboratory chamber. The aerosol physicochemical properties were measured both in well-mixed chamber air and directly above the candle flame with online and offline techniques. All candles showed different emission profiles over time with high repeatability among replicates. The particle mass emissions from stressed burning for all candle types were dominated by soot (black carbon; BC). The wax and wick composition strongly influenced emissions of BC, PM2.5 , and particle-phase polycyclic aromatic hydrocarbons (PAHs), and to lower degree ultrafine particles, inorganic and organic carbon fraction of PM, but did not influence NOx , formaldehyde, and gas-phase PAHs. Measurements directly above the flame showed empirical evidence of short-lived strong emission peaks of soot particles. The results show the importance of including the entire burn time of candles in exposure assessments, as their emissions can vary strongly over time. Preventing stressed burning of candles can reduce exposure to pollutants in indoor air.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 62
Typ av publikation
tidskriftsartikel (37)
konferensbidrag (24)
annan publikation (1)
Typ av innehåll
refereegranskat (51)
övrigt vetenskapligt/konstnärligt (9)
populärvet., debatt m.m. (2)
Författare/redaktör
Wierzbicka, Aneta (62)
Gudmundsson, Anders (35)
Pagels, Joakim (31)
Nielsen, Jörn (21)
Isaxon, Christina (18)
Assarsson, Eva (17)
visa fler...
Bohgard, Mats (16)
Kåredal, Monica (13)
Albin, Maria (13)
Dierschke, Katrin (13)
Omelekhina, Yuliya (12)
Nilsson, Patrik (12)
Löndahl, Jakob (11)
Jönsson, Bo A (9)
Hagerman, Inger (9)
Berglund, Margareta (9)
Rissler, Jenny (8)
Andersen, Christina (8)
Xu, YiYi (8)
Andersson, Ulla B (8)
Krais, Annette M (7)
Axmon, Anna (6)
Strandberg, Bo (6)
Broberg Palmgren, Ka ... (5)
Eriksson, Axel (5)
Pedersen, Eja (5)
Lindh, Christian H. (5)
Eriksson, Axel C. (5)
Österberg, Kai (5)
Gren, Louise (5)
Barregård, Lars (4)
Stockfelt, Leo (4)
Poulsen, Torben (4)
Nordquist, Birgitta (4)
Loft, Steffen (4)
Andersson, Ulla B. K ... (4)
Wallentén, Petter (3)
Wargocki, Pawel (3)
Gao, Chuansi (3)
Swietlicki, Erik (3)
Querol, Xavier (3)
Tinnerberg, Håkan (3)
Broberg, Karin (3)
Sadrizadeh, Sasan (3)
Lovén, Karin (3)
Krais, Annette (3)
Sällsten, Gerd (3)
Clausen, Per Axel (3)
Bloom, Erica (3)
Bluyssen, Philomena ... (3)
visa färre...
Lärosäte
Lunds universitet (62)
Göteborgs universitet (6)
Karolinska Institutet (6)
RISE (3)
Kungliga Tekniska Högskolan (1)
Mälardalens universitet (1)
visa fler...
Linköpings universitet (1)
Malmö universitet (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (60)
Svenska (2)
Forskningsämne (UKÄ/SCB)
Teknik (7)
Naturvetenskap (3)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy