SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wierzbicka Aneta) ;pers:(Krais Annette M)"

Sökning: WFRF:(Wierzbicka Aneta) > Krais Annette M

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Andersen, Christina, et al. (författare)
  • Inhalation and dermal uptake of particle and gas phase phthalates - A human chamber exposure study
  • 2018
  • Ingår i: 15th Conference of the International Society of Indoor Air Quality and Climate, INDOOR AIR 2018. - 9781713826514
  • Konferensbidrag (refereegranskat)abstract
    • We have exposed sixteen test subjects to particle and gas phase phthalates in the controlled chamber exposure study. Deuterium labelled phthalates were used to generate particle D4-DEHP (di(2-ethylhexyl) phthalate) and gas phase D4-DEP (diethyl phthalate) for exposures scenarios allowed studying the dermal only and combined inhalational and dermal uptake. Metabolites were measured in urine samples before and after three hours of exposure. The inhalation was the dominant route of uptake for both DEHP and DEP in this study design and exposure settings. Larger uptake of DEP compared to DEHP both via inhalation and dermal uptake was observed. Dermal uptake of DEHP was not observed in this study. Inhalational urinary excretion factors of the metabolites were found to be 0.73 for DEHP and 0.53 for DEP. This study also highlights the importance of taking into consideration the deposited dose of inhaled particles in studies of uptake of particles.
  •  
2.
  •  
3.
  • Eriksson, Axel C., et al. (författare)
  • The role of organic fraction of aerosol particles in uptake of indoor SVOC investigated with real time aerosol mass spectrometry
  • 2018
  • Ingår i: 15th Conference of the International Society of Indoor Air Quality and Climate, INDOOR AIR 2018. - 9781713826514
  • Konferensbidrag (refereegranskat)abstract
    • We investigate the uptake of the Di(2-ethylhexyl) phthalate (DEHP) by laboratory generated and ambient aerosol particles passing through a 1.2 liter chamber covered with vinyl flooring on its internal surfaces. We found approximately five times more efficient DEHP uptake on a mass basis by organic particles (ambient particles) compared to laboratory generated salt particles. The increased uptake is likely due to increased adsorption by pre-existing organic aerosol, which is abundant in the ambient aerosol particles. This implies that compounds with adverse health outcomes are added to particles in indoor air after infiltration into buildings via gas-to-particle conversion of indoor generated SVOCs. We show that aerosol mass spectrometry is a suitable tool for highly time-resolved investigations of this process.
  •  
4.
  • Krais, Annette M., et al. (författare)
  • Biomarkers after Controlled Inhalation Exposure to Exhaust from Hydrogenated Vegetable Oil (HVO)
  • 2021
  • Ingår i: International Journal of Environmental Research and Public Health. - : MDPI AG. - 1661-7827 .- 1660-4601. ; 18:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Hydrogenated vegetable oil (HVO) is a renewable diesel fuel used to replace petroleum diesel. The organic compounds in HVO are poorly characterized; therefore, toxicological properties could be different from petroleum diesel exhaust. The aim of this study was to evaluate the exposure and effective biomarkers in 18 individuals after short-term (3 h) exposure to HVO exhaust and petroleum diesel exhaust fumes. Liquid chromatography tandem mass spectrometry was used to analyze urinary biomarkers. A proximity extension assay was used for the measurement of inflammatory proteins in plasma samples. Short-term (3 h) exposure to HVO exhaust (PM1 ~1 µg/m3 and ~90 µg/m3 for vehicles with and without exhaust aftertreatment systems, respectively) did not increase any exposure biomarker, whereas petroleum diesel exhaust (PM1 ~300 µg/m3 ) increased urinary 4-MHA, a biomarker for p-xylene. HVO exhaust from the vehicle without exhaust aftertreatment system increased urinary 4-HNE-MA, a biomarker for lipid peroxidation, from 64 ng/mL urine (before exposure) to 141 ng/mL (24 h after exposure, p < 0.001). There was no differential expression of plasma inflammatory proteins between the HVO exhaust and control exposure group. In conclusion, short-term exposure to low concentrations of HVO exhaust did not increase urinary exposure biomarkers, but caused a slight increase in lipid peroxidation associated with the particle fraction.
  •  
5.
  • Krais, Annette M., et al. (författare)
  • Excretion of Urinary Metabolites of the Phthalate Esters DEP and DEHP in 16 Volunteers after Inhalation and Dermal Exposure
  • 2018
  • Ingår i: International Journal of Environmental Research and Public Health. - : MDPI AG. - 1660-4601. ; 15:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Phthalate esters are suspected endocrine disruptors that are found in a wide range of applications. The aim of this study was to determine the excretion of urinary metabolites in 16 individuals after inhalation and/or dermal exposure to 100⁻300 µg/m³ of deuterium-labelled diethyl phthalate (D₄-DEP) and bis(2-ethylhexyl) phthalate (D₄-DEHP). Dermal exposure in this study represents a case with clean clothing acting as a barrier. After inhalation, D₄-DEP and D₄-DEHP metabolites were excreted rapidly, though inter-individual variation was high. D₄-DEP excretion peaked 3.3 h (T½ of 2.1 h) after combined inhalation and dermal exposure, with total excreted metabolite levels ranging from 0.055 to 2.351 nmol/nmol/m³ (nmol of urinary metabolites per phthalates air concentration in (nmol/m³)). After dermal exposure to D₄-DEP, metabolite excretion peaked 4.6 h (T½ of 2.7 h) after exposure, with excreted metabolite levels in between 0.017 and 0.223 nmol/nmol/m³. After combined inhalation and dermal exposure to D₄-DEHP, the excretion of all five analysed metabolites peaked after 4.7 h on average (T½ of 4.8 h), and metabolite levels ranged from 0.072 to 1.105 nmol/nmol/m³ between participants. No dermal uptake of particle phase D₄-DEHP was observed. In conclusion, the average excreted levels of metabolites after combined inhalation and dermal exposure to D₄-DEP was three times higher than after combined exposure to D₄-DEHP; and nine times higher than after dermal exposure of D₄-DEP. This study was made possible due to the use of novel approaches, i.e., the use of labelled phthalate esters to avoid the background concentration, and innovative technique of phthalate generation, both in the particle and the gas phase.
  •  
6.
  • Scholten, Rebecca Harnung, et al. (författare)
  • Inhalation of hydrogenated vegetable oil combustion exhaust and genotoxicity responses in humans
  • 2021
  • Ingår i: Archives of Toxicology. - : Springer Science and Business Media LLC. - 0340-5761 .- 1432-0738. ; 95:10, s. 3407-3416
  • Tidskriftsartikel (refereegranskat)abstract
    • Biofuels from vegetable oils or animal fats are considered to be more sustainable than petroleum-derived diesel fuel. In this study, we have assessed the effect of hydrogenated vegetable oil (HVO) exhaust on levels of DNA damage in peripheral blood mononuclear cells (PBMCs) as primary outcome, and oxidative stress and inflammation as mediators of genotoxicity. In a randomized cross-over study, healthy humans were exposed to filtered air, inorganic salt particles, exhausts from combustion of HVO in engines with aftertreatment [i.e. emission with nitrogen oxides and low amounts of particulate matter less than 2.5 µm (approximately 1 µg/m3)], or without aftertreatment (i.e. emission with nitrogen oxides and 93 ± 13 µg/m3 of PM2.5). The subjects were exposed for 3 h and blood samples were collected before, within 1 h after the exposure and 24 h after. None of the exposures caused generation of DNA strand breaks and oxidatively damaged DNA, or affected gene expression of factors related to DNA repair (Ogg1), antioxidant defense (Hmox1) or pro-inflammatory cytokines (Ccl2, Il8 and Tnfa) in PBMCs. The results from this study indicate that short-term HVO exhaust exposure is not associated with genotoxic hazard in humans.
  •  
7.
  • Strandberg, Bo, et al. (författare)
  • Particulate-Bound Polycyclic Aromatic Hydrocarbons (PAHs) and their Nitro- and Oxy-Derivative Compounds Collected Inside and Outside Occupied Homes in Southern Sweden
  • 2023
  • Ingår i: Polycyclic Aromatic Compounds. - : Informa UK Limited. - 1040-6638 .- 1563-5333. ; 43:8, s. 7399-7415
  • Tidskriftsartikel (refereegranskat)abstract
    • This study presents indoor and outdoor levels of airborne fine particles (PM2.5), particle bound polycyclic aromatic compounds (PACs) including parent-, alkylated-, nitro-, and oxy-PAHs. Week-long simultaneous measurements were conducted inside and outside 15 occupied homes in southern Sweden during wintertime. The homes were single-family houses or apartments located in urban, semi-urban, and rural areas. The PM2.5 and PACs levels were low compared to studies worldwide. There was great variation in concentrations between sites, which likely is due to proximity to road and traffic intensity. The lower concentrations of nitro and oxy-PAHs compared to parent PAHs in this study, compared to other studies, could possibly be due to lower atmospheric photochemical formation outdoors because the cold climate. This assumption could not be confirmed and need to be further tested. The results point to that particle PAC levels found inside arise primarily from outdoor. This correlation was not as clear for PM2.5. The results of a comparison between residences before and after energy renovation did not indicate an improvement in indoor air regarding PACs. To understand exposure and assess risks it is important to measure wide range of PACs both in gas and particle phase.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy