SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Barroso Inês) srt2:(2009)"

Sökning: WFRF:(Barroso Inês) > (2009)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Lindgren, Cecilia M, et al. (författare)
  • Genome-wide association scan meta-analysis identifies three Loci influencing adiposity and fat distribution.
  • 2009
  • Ingår i: PLoS genetics. - : Public Library of Science (PLoS). - 1553-7404. ; 5:6, s. e1000508-
  • Tidskriftsartikel (refereegranskat)abstract
    • To identify genetic loci influencing central obesity and fat distribution, we performed a meta-analysis of 16 genome-wide association studies (GWAS, N = 38,580) informative for adult waist circumference (WC) and waist-hip ratio (WHR). We selected 26 SNPs for follow-up, for which the evidence of association with measures of central adiposity (WC and/or WHR) was strong and disproportionate to that for overall adiposity or height. Follow-up studies in a maximum of 70,689 individuals identified two loci strongly associated with measures of central adiposity; these map near TFAP2B (WC, P = 1.9x10(-11)) and MSRA (WC, P = 8.9x10(-9)). A third locus, near LYPLAL1, was associated with WHR in women only (P = 2.6x10(-8)). The variants near TFAP2B appear to influence central adiposity through an effect on overall obesity/fat-mass, whereas LYPLAL1 displays a strong female-only association with fat distribution. By focusing on anthropometric measures of central obesity and fat distribution, we have identified three loci implicated in the regulation of human adiposity.
  •  
3.
  • Newton-Cheh, Christopher, et al. (författare)
  • Genome-wide association study identifies eight loci associated with blood pressure
  • 2009
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 41:6, s. 666-676
  • Tidskriftsartikel (refereegranskat)abstract
    • Elevated blood pressure is a common, heritable cause of cardiovascular disease worldwide. To date, identification of common genetic variants influencing blood pressure has proven challenging. We tested 2.5 million genotyped and imputed SNPs for association with systolic and diastolic blood pressure in 34,433 subjects of European ancestry from the Global BPgen consortium and followed up findings with direct genotyping (N <= 71,225 European ancestry, N <= 12,889 Indian Asian ancestry) and in silico comparison (CHARGE consortium, N 29,136). We identified association between systolic or diastolic blood pressure and common variants in eight regions near the CYP17A1 (P = 7 x 10(-24)), CYP1A2 (P = 1 x 10(-23)), FGF5 (P = 1 x 10(-21)), SH2B3 (P = 3 x 10(-18)), MTHFR (P = 2 x 10(-13)), c10orf107 (P = 1 x 10(-9)), ZNF652 (P = 5 x 10(-9)) and PLCD3 (P = 1 x 10(-8)) genes. All variants associated with continuous blood pressure were associated with dichotomous hypertension. These associations between common variants and blood pressure and hypertension offer mechanistic insights into the regulation of blood pressure and may point to novel targets for interventions to prevent cardiovascular disease.
  •  
4.
  • Ong, Ken K., et al. (författare)
  • Genetic variation in LIN28B is associated with the timing of puberty
  • 2009
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 41:6, s. 729-733
  • Tidskriftsartikel (refereegranskat)abstract
    • The timing of puberty is highly variable(1). We carried out a genome-wide association study for age at menarche in 4,714 women and report an association in LIN28B on chromosome 6 (rs314276, minor allele frequency (MAF) = 0.33, P = 1.5 x 10(-8)). In independent replication studies in 16,373 women, each major allele was associated with 0.12 years earlier menarche (95% CI = 0.08-0.16; P = 2.8 x 10(-10); combined P = 3.6 x 10(-16)). This allele was also associated with earlier breast development in girls (P = 0.001; N = 4,271); earlier voice breaking (P = 0.006, N = 1,026) and more advanced pubic hair development in boys (P = 0.01; N = 4,588); a faster tempo of height growth in girls (P = 0.00008; N = 4,271) and boys (P = 0.03; N = 4,588); and shorter adult height in women (P = 3.6 x 10(-7); N = 17,274) and men (P = 0.006; N = 9,840) in keeping with earlier growth cessation. These studies identify variation in LIN28B, a potent and specific regulator of microRNA processing(2), as the first genetic determinant regulating the timing of human pubertal growth and development.
  •  
5.
  • Prokopenko, Inga, et al. (författare)
  • Variants in MTNR1B influence fasting glucose levels
  • 2009
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 41:1, s. 77-81
  • Tidskriftsartikel (refereegranskat)abstract
    • To identify previously unknown genetic loci associated with fasting glucose concentrations, we examined the leading association signals in ten genome-wide association scans involving a total of 36,610 individuals of European descent. Variants in the gene encoding melatonin receptor 1B (MTNR1B) were consistently associated with fasting glucose across all ten studies. The strongest signal was observed at rs10830963, where each G allele (frequency 0.30 in HapMap CEU) was associated with an increase of 0.07 (95% CI = 0.06-0.08) mmol/l in fasting glucose levels (P = 3.2 x 10(-50)) and reduced beta-cell function as measured by homeostasis model assessment (HOMA-B, P = 1.1 x 10(-15)). The same allele was associated with an increased risk of type 2 diabetes (odds ratio = 1.09 (1.05-1.12), per G allele P = 3.3 x 10(-7)) in a meta-analysis of 13 case-control studies totaling 18,236 cases and 64,453 controls. Our analyses also confirm previous associations of fasting glucose with variants at the G6PC2 (rs560887, P = 1.1 x 10(-57)) and GCK (rs4607517, P = 1.0 x 10(-25)) loci.
  •  
6.
  • Renström, Frida, et al. (författare)
  • Replication and extension of genome-wide association study results for obesity in 4,923 adults from Northern Sweden.
  • 2009
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 18:8, s. 1489-1496
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent genome-wide association studies (GWAS) have identified multiple risk loci for common obesity (FTO, MC4R, TMEM18, GNPDA2, SH2B1, KCTD15, MTCH2, NEGR1, and PCSK1). Here we extend those studies by examining associations with adiposity and type 2 diabetes in Swedish adults. The nine single nucleotide polymorphisms (SNPs) were genotyped in 3,885 non-diabetic and 1,038 diabetic individuals with available measures of height, weight and BMI. Adipose mass and distribution was objectively assessed using dual energy X-ray absorptiometry (DEXA) in a sub-group of non-diabetics (n=2,206). In models with adipose mass traits, BMI or obesity as outcomes, the most strongly associated SNP was FTO rs1121980 (P<0.001). Five other SNPs (SH2B1 rs7498665, MTCH2 rs4752856, MC4R rs17782313, NEGR1 rs2815752, and GNPDA2 rs10938397) were significantly associated with obesity. To summarize the overall genetic burden, a weighted risk score comprising a subset of SNPs was constructed; those in the top quintile of the score were heavier (+2.6kg) and had more total (+2.4kg), gynoid (+191g), and abdominal (+136g) adipose tissue than those in the lowest quintile (all P<0.001). The genetic burden score significantly increased diabetes risk, with those in the highest quintile (n=193/594 cases/controls) being at 1.55-fold (95% CI: 1.21-1.99; P<0.0001) greater risk of type 2 diabetes than those in the lowest quintile (n=130/655 cases/controls). In summary, we have statistically replicated six of the previously associated obese-risk loci and our results suggest that the weight-inducing effects of these variants are explained largely by increased adipose accumulation.
  •  
7.
  • Salanti, Georgia, et al. (författare)
  • Underlying Genetic Models of Inheritance in Established Type 2 Diabetes Associations
  • 2009
  • Ingår i: American Journal of Epidemiology. - : Oxford University Press (OUP). - 0002-9262 .- 1476-6256. ; 170:5, s. 537-545
  • Forskningsöversikt (refereegranskat)abstract
    • For most associations of common single nucleotide polymorphisms (SNPs) with common diseases, the genetic model of inheritance is unknown. The authors extended and applied a Bayesian meta-analysis approach to data from 19 studies on 17 replicated associations with type 2 diabetes. For 13 SNPs, the data fitted very well to an additive model of inheritance for the diabetes risk allele; for 4 SNPs, the data were consistent with either an additive model or a dominant model; and for 2 SNPs, the data were consistent with an additive or recessive model. Results were robust to the use of different priors and after exclusion of data for which index SNPs had been examined indirectly through proxy markers. The Bayesian meta-analysis model yielded point estimates for the genetic effects that were very similar to those previously reported based on fixed- or random-effects models, but uncertainty about several of the effects was substantially larger. The authors also examined the extent of between-study heterogeneity in the genetic model and found generally small between-study deviation values for the genetic model parameter. Heterosis could not be excluded for 4 SNPs. Information on the genetic model of robustly replicated association signals derived from genome-wide association studies may be useful for predictive modeling and for designing biologic and functional experiments.
  •  
8.
  • Willer, Cristen J., et al. (författare)
  • Six new loci associated with body mass index highlight a neuronal influence on body weight regulation
  • 2009
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 41:1, s. 25-34
  • Tidskriftsartikel (refereegranskat)abstract
    • Common variants at only two loci, FTO and MC4R, have been reproducibly associated with body mass index (BMI) in humans. To identify additional loci, we conducted meta-analysis of 15 genome-wide association studies for BMI (n > 32,000) and followed up top signals in 14 additional cohorts (n > 59,000). We strongly confirm FTO and MC4R and identify six additional loci (P < 5 x 10(-8)): TMEM18, KCTD15, GNPDA2, SH2B1, MTCH2 and NEGR1 (where a 45-kb deletion polymorphism is a candidate causal variant). Several of the likely causal genes are highly expressed or known to act in the central nervous system (CNS), emphasizing, as in rare monogenic forms of obesity, the role of the CNS in predisposition to obesity.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8
Typ av publikation
tidskriftsartikel (6)
konferensbidrag (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (8)
Författare/redaktör
Barroso, Ines (8)
Groop, Leif (6)
Wareham, Nicholas J. (6)
McCarthy, Mark I (6)
Boehnke, Michael (6)
Soranzo, Nicole (5)
visa fler...
Kuusisto, Johanna (5)
Laakso, Markku (5)
Zhao, Jing Hua (5)
Strachan, David P (4)
Mohlke, Karen L (4)
Tuomilehto, Jaakko (4)
Abecasis, Goncalo R. (4)
Wichmann, H. Erich (4)
Jarvelin, Marjo-Riit ... (4)
Peltonen, Leena (4)
Luan, Jian'an (4)
Altshuler, David (4)
Loos, Ruth J F (4)
Elliott, Paul (4)
Zeggini, Eleftheria (4)
Illig, Thomas (4)
Waterworth, Dawn M. (4)
Schlessinger, David (4)
Prokopenko, Inga (4)
Coin, Lachlan (4)
Khaw, Kay-Tee (3)
Tuomi, Tiinamaija (3)
Salomaa, Veikko (3)
Deloukas, Panos (3)
Isomaa, Bo (3)
Hu, Frank B. (3)
Langenberg, Claudia (3)
Yuan, Xin (3)
Gieger, Christian (3)
Samani, Nilesh J. (3)
Hattersley, Andrew T (3)
Palmer, Colin N. A. (3)
Meitinger, Thomas (3)
Jousilahti, Pekka (3)
Bingham, Sheila A. (3)
Johnson, Toby (3)
Hofman, Albert (3)
Morris, Andrew D (3)
Uitterlinden, André ... (3)
McArdle, Wendy L (3)
Voight, Benjamin F. (3)
Witteman, Jacqueline ... (3)
Frayling, Timothy M (3)
Willer, Cristen J (3)
visa färre...
Lärosäte
Lunds universitet (6)
Umeå universitet (2)
Karolinska Institutet (2)
Göteborgs universitet (1)
Uppsala universitet (1)
Örebro universitet (1)
Språk
Engelska (8)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (7)
År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy