SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Boone C. D.) "

Sökning: WFRF:(Boone C. D.)

  • Resultat 11-20 av 50
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
11.
  • Léget, P-F, et al. (författare)
  • SUGAR : An improved empirical model of Type Ia supernovae based on spectral features
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 636
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Type Ia supernovae (SNe Ia) are widely used to measure the expansion of the Universe. Improving distance measurements of SNe Ia is one technique to better constrain the acceleration of expansion and determine its physical nature.Aims. This document develops a new SNe Ia spectral energy distribution (SED) model, called the SUpernova Generator And Reconstructor (SUGAR), which improves the spectral description of SNe Ia, and consequently could improve the distance measurements.Methods. This model was constructed from SNe Ia spectral properties and spectrophotometric data from the Nearby Supernova Factory collaboration. In a first step, a principal component analysis-like method was used on spectral features measured at maximum light, which allowed us to extract the intrinsic properties of SNe Ia. Next, the intrinsic properties were used to extract the average extinction curve. Third, an interpolation using Gaussian processes facilitated using data taken at different epochs during the lifetime of an SN Ia and then projecting the data on a fixed time grid. Finally, the three steps were combined to build the SED model as a function of time and wavelength. This is the SUGAR model.Results. The main advancement in SUGAR is the addition of two additional parameters to characterize SNe Ia variability. The first is tied to the properties of SNe Ia ejecta velocity and the second correlates with their calcium lines. The addition of these parameters, as well as the high quality of the Nearby Supernova Factory data, makes SUGAR an accurate and efficient model for describing the spectra of normal SNe Ia as they brighten and fade.Conclusions. The performance of this model makes it an excellent SED model for experiments like the Zwicky Transient Facility, the Large Synoptic Survey Telescope, or the Wide Field Infrared Survey Telescope.
  •  
12.
  • Nordin, J., et al. (författare)
  • Understanding type Ia supernovae through their U-band spectra
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 614
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Observations of type Ia supernovae (SNe Ia) can be used to derive accurate cosmological distances through empirical standardization techniques. Despite this success neither the progenitors of SNe Ia nor the explosion process are fully understood. The U-band region has been less well observed for nearby SNe, due to technical challenges, but is the most readily accessible band for high-redshift SNe. Aims. Using spectrophotometry from the Nearby Supernova Factory, we study the origin and extent of U-band spectroscopic variations in SNe Ia and explore consequences for their standardization and the potential for providing new insights into the explosion process. Methods. We divide the U-band spectrum into four wavelength regions lambda(uNi), lambda(uTi), lambda(uSi) and lambda(uCa). Two of these span the Ca H&K lambda lambda 3934, 3969 complex. We employ spectral synthesis using SYNAPPS to associate the two bluer regions with Ni/Co and Ti. Results. The flux of the uTi feature is an extremely sensitive temperature/ luminosity indicator, standardizing the SN peak luminosity to 0.116 +/- 0.011 mag root mean square (RMS). A traditional SALT2. 4 fit on the same sample yields a 0.135 mag RMS. Standardization using uTi also reduces the difference in corrected magnitude between SNe originating from different host galaxy environments. Early U-band spectra can be used to probe the Ni + Co distribution in the ejecta, thus offering a rare window into the source of light curve power. The uCa flux further improves standardization, yielding a 0.086 +/- 0.010 mag RMS without the need to include an additional intrinsic dispersion to reach chi(2) /dof similar to 1. This reduction in RMS is partially driven by an improved standardization of Shallow Silicon and 91T-like SNe.
  •  
13.
  • Saunders, C., et al. (författare)
  • SNEMO : Improved Empirical Models for Type Ia Supernovae
  • 2018
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 869:2
  • Tidskriftsartikel (refereegranskat)abstract
    • SN Ia cosmology depends on the ability to fit and standardize observations of supernova magnitudes with an empirical model. We present here a series of new models of SN Ia spectral time series that capture a greater amount of supernova diversity than is possible with the models that are currently customary. These are entitled SuperNova Empirical MOdels (SNEMO; https://snfactory.lbl.gov/snemo). The models are constructed using spectrophotometric time series from 172 individual supernovae from the Nearby Supernova Factory, comprising more than 2000 spectra. Using the available observations, Gaussian processes are used to predict a full spectral time series for each supernova. A matrix is constructed from the spectral time series of all the supernovae, and Expectation Maximization Factor Analysis is used to calculate the principal components of the data. K-fold cross-validation then determines the selection of model parameters and accounts for color variation in the data. Based on this process, the final models are trained on supernovae that have been dereddened using the Fitzpatrick and Massa extinction relation. Three final models are presented here: SNEMO2, a two-component model for comparison with current Type Ia models; SNEMO7, a seven-component model chosen for standardizing supernova magnitudes, which results in a total dispersion of 0.100mag for a validation set of supernovae, of which 0.087 mag is unexplained (a total dispersion of 0.113 mag with an unexplained dispersion of 0.097 mag is found for the total set of training and validation supernovae); and SNEMO15, a comprehensive 15-component model that maximizes the amount of spectral time-series behavior captured.
  •  
14.
  • Huang, X., et al. (författare)
  • The Extinction Properties of and Distance to the Highly Reddened Type IA Supernova 2012cu
  • 2017
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 836:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Correcting Type Ia Supernova brightnesses for extinction by dust has proven to be a vexing problem. Here we study the dust foreground to the highly reddened SN 2012cu, which is projected onto a dust lane in the galaxy NGC 4772. The analysis is based on multi-epoch, spectrophotometric observations spanning from 3300-9200 A degrees, obtained by the Nearby Supernova Factory. Phase-matched comparison of the spectroscopically twinned SN 2012cu and SN 2011fe across 10 epochs results in the best-fit color excess of (E(B-V), RMS) = (1.00, 0.03) and total-to-selective extinction ratio of (RV, RMS) = (2.95, 0.08) toward SN 2012cu within its host galaxy. We further identify several diffuse interstellar bands and compare the 5780 angstrom band with the dust- to-band ratio for the Milky Way (MW). Overall, we find the foreground dust-extinction properties for SN 2012cu to be consistent with those of the MW. Furthermore, we find no evidence for significant time variation in any of these extinction tracers. We also compare the dust extinction curve models of Cardelli et al., O'Donnell,. and Fitzpatrick, and find the predictions of Fitzpatrick fit SN 2012cu the best. Finally, the distance to NGC4772, the host of SN 2012cu, at a redshift of z = 0.0035, often assigned to the Virgo Southern Extension, is determined to be 16.6 +/- 1.1 Mpc. We compare this result with distance measurements in the literature.
  •  
15.
  • Lombardo, S., et al. (författare)
  • SCALA : In situ calibration for integral field spectrographs
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 607
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. The scientific yield of current and future optical surveys is increasingly limited by systematic uncertainties in the flux calibration. This is the case for type Ia supernova (SN Ia) cosmology programs, where an improved calibration directly translates into improved cosmological constraints. Current methodology rests on models of stars. Here we aim to obtain flux calibration that is traceable to state-of-the-art detector-based calibration. Methods. We present the SNIFS Calibration Apparatus (SCALA), a color (relative) flux calibration system developed for the SuperNova integral field spectrograph (SNIFS), operating at the University of Hawaii 2.2 m (UH 88) telescope. Results. By comparing the color trend of the illumination generated by SCALA during two commissioning runs, and to previous laboratory measurements, we show that we can determine the light emitted by SCALA with a long-term repeatability better than 1%. We describe the calibration procedure necessary to control for system aging. We present measurements of the SNIFS throughput as estimated by SCALA observations. Conclusions. The SCALA calibration unit is now fully deployed at the UH 88 telescope, and with it color-calibration between 4000 angstrom and 9000 angstrom is stable at the percent level over a one-year baseline.
  •  
16.
  • Taubenberger, S., et al. (författare)
  • SN2012dn from early to late times : 09dc-like supernovae reassessed
  • 2019
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 488:4, s. 5473-5488
  • Tidskriftsartikel (refereegranskat)abstract
    • As a candidate super-Chandrasekhar' or 09dc-like TypeIa supernova (SNIa), SN 2012dn shares many characteristics with other members of this remarkable class of objects but lacks their extraordinary luminosity. Here, we present and discuss the most comprehensive optical data set of this SN to date, comprised of a densely sampled series of early-time spectra obtained within the Nearby Supernova Factory project, plus photometry and spectroscopy obtained at the Very Large Telescope about 1yr after the explosion. The light curves, colour curves, spectral time series, and ejecta velocities of SN 2012dn are compared with those of other 09dc-like and normal SNeIa, the overall variety within the class of 09dc-like SNeIa is discussed, and new criteria for 09dc-likeness are proposed. Particular attention is directed to additional insight that the late-phase data provide. The nebular spectra show forbidden lines of oxygen and calcium, elements that are usually not seen in late-time spectra of SNeIa, while the ionization state of the emitting iron plasma is low, pointing to low ejecta temperatures and high densities. The optical light curves are characterized by an enhanced fading starting similar to 60d after maximum and very low luminosities in the nebular phase, which is most readily explained by unusually early formation of clumpy dust in the ejecta. Taken together, these effects suggest a strongly perturbed ejecta density profile, which might lend support to the idea that 09dc-like characteristics arise from a brief episode of interaction with a hydrogen-deficient envelope during the first hours or days after the explosion.
  •  
17.
  • Wolff, M.A., et al. (författare)
  • Validation of HNO3, ClONO2 and N2O5 from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS)
  • 2008
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 8:13, s. 3529-3562
  • Tidskriftsartikel (refereegranskat)abstract
    • The Atmospheric Chemistry Experiment (ACE) satellite was launched on 12 August 2003. Its two instruments measure vertical profiles of over 30 atmospheric trace gases by analyzing solar occultation spectra in the ultraviolet/visible and infrared wavelength regions. The reservoir gases HNO3, ClONO2, and N2O5 are three of the key species provided by the primary instrument, the ACE Fourier Transform Spectrometer (ACE-FTS). This paper describes the ACE-FTS version 2.2 data products, including the N2O5 update, for the three species and presents validation comparisons with available observations. We have compared volume mixing ratio (VMR) profiles of HNO3, ClONO2, and N2O5 with measurements by other satellite instruments (SMR, MLS, MIPAS), aircraft measurements (ASUR), and single balloon-flights (SPIRALE, FIRS-2). Partial columns of HNO3 and ClONO2 were also compared with measurements by ground-based Fourier Transform Infrared (FTIR) spectrometers. Overall the quality of the ACE-FTS v2.2 HNO3 VMR profiles is good from 18 to 35 km. For the statistical satellite comparisons, the mean absolute differences are generally within ±1 ppbv ±20%) from 18 to 35 km. For MIPAS and MLS comparisons only, mean relative differences lie within±10% between 10 and 36 km. ACE-FTS HNO3 partial columns (~15–30 km) show a slight negative bias of −1.3% relative to the ground-based FTIRs at latitudes ranging from 77.8° S–76.5° N. Good agreement between ACE-FTS ClONO2 and MIPAS, using the Institut für Meteorologie und Klimaforschung and Instituto de Astrofísica de Andalucía (IMK-IAA) data processor is seen. Mean absolute differences are typically within ±0.01 ppbv between 16 and 27 km and less than +0.09 ppbv between 27 and 34 km. The ClONO2 partial column comparisons show varying degrees of agreement, depending on the location and the quality of the FTIR measurements. Good agreement was found for the comparisons with the midlatitude Jungfraujoch partial columns for which the mean relative difference is 4.7%. ACE-FTS N2O5 has a low bias relative to MIPAS IMK-IAA, reaching −0.25 ppbv at the altitude of the N2O5 maximum (around 30 km). Mean absolute differences at lower altitudes (16–27 km) are typically −0.05 ppbv for MIPAS nighttime and ±0.02 ppbv for MIPAS daytime measurements.
  •  
18.
  • Adams, C., et al. (författare)
  • Validation of ACE and OSIRIS ozone and NO2 measurements using ground-based instruments at 80 degrees N
  • 2012
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 5:5, s. 927-953
  • Tidskriftsartikel (refereegranskat)abstract
    • The Optical Spectrograph and Infra-Red Imager System (OSIRIS) and the Atmospheric Chemistry Experiment (ACE) have been taking measurements from space since 2001 and 2003, respectively. This paper presents intercomparisons between ozone and NO2 measured by the ACE and OSIRIS satellite instruments and by ground-based instruments at the Polar Environment Atmospheric Research Laboratory (PEARL), which is located at Eureka, Canada (80A degrees N, 86A degrees W) and is operated by the Canadian Network for the Detection of Atmospheric Change (CANDAC). The ground-based instruments included in this study are four zenith-sky differential optical absorption spectroscopy (DOAS) instruments, one Bruker Fourier transform infrared spectrometer (FTIR) and four Brewer spectrophotometers. Ozone total columns measured by the DOAS instruments were retrieved using new Network for the Detection of Atmospheric Composition Change (NDACC) guidelines and agree to within 3.2%. The DOAS ozone columns agree with the Brewer spectrophotometers with mean relative differences that are smaller than 1.5%. This suggests that for these instruments the new NDACC data guidelines were successful in producing a homogenous and accurate ozone dataset at 80A degrees N. Satellite 14-52 km ozone and 17-40 km NO2 partial columns within 500 km of PEARL were calculated for ACE-FTS Version 2.2 (v2.2) plus updates, ACE-FTS v3.0, ACE-MAESTRO (Measurements of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation) v1.2 and OSIRIS SaskMART v5.0x ozone and Optimal Estimation v3.0 NO2 data products. The new ACE-FTS v3.0 and the validated ACE-FTS v2.2 partial columns are nearly identical, with mean relative differences of 0.0 +/- 0.2% and -0.2 +/- 0.1% for v2.2 minus v3.0 ozone and NO2, respectively. Ozone columns were constructed from 14-52 km satellite and 0-14 km ozonesonde partial columns and compared with the ground-based total column measurements. The satellite-plus-sonde measurements agree with the ground-based ozone total columns with mean relative differences of 0.1-7.3%. For NO2, partial columns from 17 km upward were scaled to noon using a photochemical model. Mean relative differences between OSIRIS, ACE-FTS and ground-based NO2 measurements do not exceed 20%. ACE-MAESTRO measures more NO2 than the other instruments, with mean relative differences of 25-52%. Seasonal variation in the differences between NO2 partial columns is observed, suggesting that there are systematic errors in the measurements and/or the photochemical model corrections. For ozone spring-time measurements, additional coincidence criteria based on stratospheric temperature and the location of the polar vortex were found to improve agreement between some of the instruments. For ACE-FTS v2.2 minus Bruker FTIR, the 2007-2009 spring-time mean relative difference improved from -5.0 +/- 0.4% to -3.1 +/- 0.8% with the dynamical selection criteria. This was the largest improvement, likely because both instruments measure direct sunlight and therefore have well-characterized lines-of-sight compared with scattered sunlight measurements. For NO2, the addition of a +/- 1A degrees latitude coincidence criterion improved spring-time intercomparison results, likely due to the sharp latitudinal gradient of NO2 during polar sunrise. The differences between satellite and ground-based measurements do not show any obvious trends over the missions, indicating that both the ACE and OSIRIS instruments continue to perform well.
  •  
19.
  • Carleer, M. R., et al. (författare)
  • Validation of water vapour profiles from the Atmospheric Chemistry Experiment (ACE)
  • 2008
  • Ingår i: Atmospheric Chemistry and Physics Discussion: An Interactive Open Access Journal of the European Geosciences Union. ; 8:2, s. 4499-4559
  • Tidskriftsartikel (refereegranskat)abstract
    • The Atmospheric Chemistry Experiment (ACE) mission was launched in August 2003 to sound the atmosphere by solar occultation. Water vapour (H2O), one of the most important molecules for climate and atmospheric chemistry, is one of the key species provided by the two principal instruments, the infrared Fourier Transform Spectrometer (ACE-FTS) and the MAESTRO UV-Visible spectrometer (ACE-MAESTRO). The first instrument performs measurements on several lines in the 1362–2137 cm−1 range, from which vertically resolved H2O concentration profiles are retrieved, from 7 to 90 km altitude. ACE-MAESTRO measures profiles using the water absorption band in the near infrared part of the spectrum at 926.0–969.7 nm. This paper presents a comprehensive validation of the ACE-FTS profiles. We have compared the H2O volume mixing ratio profiles with space-borne (SAGE II, HALOE, POAM III, MIPAS, SMR) observations and measurements from balloon-borne frostpoint hygrometers and a ground based lidar. We show that the ACE-FTS measurements provide H2O profiles with small retrieval uncertainties in the stratosphere (better than 5% from 15 to 70 km, gradually increasing above). The situation is unclear in the upper troposphere, due mainly to the high variability of the water vapour volume mixing ratio in this region. A new water vapour data product from the ACE-MAESTRO (Measurement of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation) is also presented and initial comparisons with ACE-FTS are discussed.
  •  
20.
  • Lambert, A., et al. (författare)
  • Validation of the Aura Microwave Limb Sounder middle atmosphere water vapor and nitrous oxide measurements
  • 2007
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 112:D24
  • Tidskriftsartikel (refereegranskat)abstract
    • The quality of the version 2.2 (v2.2) middle atmosphere water vapor and nitrous oxide measurements from the Microwave Limb Sounder (MLS) on the Earth Observing System (EOS) Aura satellite is assessed. The impacts of the various sources of systematic error are estimated by a comprehensive set of retrieval simulations. Comparisons with correlative data sets from ground-based, balloon and satellite platforms operating in the UV/ visible, infrared and microwave regions of the spectrum are performed. Precision estimates are also validated, and recommendations are given on the data usage. The v2.2 H 2 O data have been improved over v1.5 by providing higher vertical resolution in the lower stratosphere and better precision above the stratopause. The single-profile precision is ∼0.2-0.3 ppmv (4-9%), and the vertical resolution is ∼3-4 km in the stratosphere. The precision and vertical resolution become worse with increasing height above the stratopause. Over the pressure range 0.1-0.01 hPa the precision degrades from 0.4 to 1.1 ppmv (6-34%), and the vertical resolution degrades to ∼12-16 km. The accuracy is estimated to be 0.2-0.5 ppmv (4-11%) for the pressure range 68-0.01 hPa. The scientifically useful range of the H 2 O data is from 316 to 0.002 hPa, although only the 82-0.002 hPa pressure range is validated here. Substantial improvement has been achieved in the v2.2 N 2 O data over v1.5 by reducing a significant low bias in the stratosphere and eliminating unrealistically high biased mixing ratios in the polar regions. The single-profile precision is ∼13-25 ppbv (7-38%), the vertical resolution is ∼4-6 km and the accuracy is estimated to be 3-70 ppbv (9-25%) for the pressure range 100-4.6 hPa. The scientifically useful range of the N 2 O data is from 100 to 1 hPa. Copyright 2007 by the American Geophysical Union.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 11-20 av 50

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy