SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WAKA:ref ;lar1:(gu);srt2:(2000-2004);pers:(Lötvall Jan 1956)"

Sökning: WAKA:ref > Göteborgs universitet > (2000-2004) > Lötvall Jan 1956

  • Resultat 1-10 av 25
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Holgate, S. T., et al. (författare)
  • Efficacy and safety of a recombinant anti-immunoglobulin E antibody (omalizumab) in severe allergic asthma
  • 2004
  • Ingår i: Clin Exp Allergy. ; 34:4, s. 632-8.
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Patients with severe asthma are often inadequately controlled on existing anti-asthma therapy, constituting an unmet clinical need. OBJECTIVE: This randomized, double-blind, placebo-controlled trial evaluated the ability of omalizumab, a humanized monoclonal anti-IgE antibody, to improve disease control sufficiently to enable inhaled corticosteroid reduction in patients with severe allergic asthma. METHODS: After a run-in period when an optimized fluticasone dose (> or =1000 microg/day) was received for 4 weeks, patients were randomized to receive subcutaneous omalizumab [minimum 0.016 mg/kg/IgE (IU/mL) per 4 weeks; n=126] or matching placebo (n=120) at intervals of 2 or 4 weeks. The study comprised a 16-week add-on phase of treatment followed by a 16-week fluticasone-reduction phase. Short-/long-acting beta(2)-agonists were allowed as needed. RESULTS: Median reductions in fluticasone dose were significantly greater with omalizumab than placebo: 60% vs. 50% (P=0.003). Some 73.8% and 50.8% of patients, respectively, achieved a > or =50% dose reduction (P=0.001). Fluticasone dose reduction to < or =500 microg/day occurred in 60.3% of omalizumab recipients vs. 45.8% of placebo-treated patients (P=0.026). Through both phases, omalizumab reduced rescue medication requirements, improved asthma symptoms and asthma-related quality of life compared to placebo. CONCLUSION: Omalizumab treatment improves asthma control in severely allergic asthmatics, reducing inhaled corticosteroid requirements without worsening of symptom control or increase in rescue medication use.
  •  
2.
  • Hoshino, Hiroshi, et al. (författare)
  • Increased elastase and myeloperoxidase activity associated with neutrophil recruitment by IL-17 in airways in vivo
  • 2000
  • Ingår i: The Journal of allergy and clinical immunology. - 0091-6749. ; 105:1 Pt 1, s. 143-9
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: A recent study demonstrated that intratracheal administration of the T-lymphocyte cytokine IL-17 recruits neutrophils into airways in vivo by C-X-C chemokine release. It is not known whether IL-17 may also activate airway neutrophils. OBJECTIVE: Our purpose was to evaluate whether IL-17 activates neutrophils in airways in vivo and, if so, whether the proinflammatory cytokine IL-1beta modulates this action of IL-17. METHODS: Intratracheal administration of human (h) IL-17 or rat (r) IL-1beta or hIL-17 plus rIL-1beta in anesthetized, spontaneously breathing rats was followed by bronchoalveolar lavage (BAL) 6 hours later. The BAL fluid was characterized in terms of neutrophil count, of the activity for myeloperoxidase (MPO), and in some cases of the activity for elastase (ELA). Isolated rat neutrophils were stimulated with hIL-17 in vitro, followed by characterization of MPO activity in the cell medium. RESULTS: hIL-17 (1 microg) increased the ELA and the MPO activity, as well as the neutrophil count in BAL fluid, whereas the proinflammatory cytokine rIL-1beta (2.5 ng) did not. Pretreatment with rIL-1beta enhanced IL-17induced ELA and MPO activity, without increasing the neutrophil count. The BAL ELA activity was inhibited by a specific inhibitor of neutrophil serine proteases. Stimulation with hIL-17 in vitro did not increase MPO activity in isolated neutrophils. CONCLUSION: IL-17 can activate neutrophils in association with their recruitment into the airways in vivo and this effect is probably achieved through induced release of mediators from other airway cells.
  •  
3.
  • Johansson, Anna-Karin, 1974, et al. (författare)
  • Allergen-induced traffic of bone marrow eosinophils, neutrophils and lymphocytes to airways
  • 2004
  • Ingår i: Eur J Immunol. ; 34:11, s. 3135-3145.
  • Tidskriftsartikel (refereegranskat)abstract
    • We evaluated whether bone marrow (BM) inflammatory cells have capacity to traffic into the airways following allergen exposure in a mouse model of allergen-induced airway inflammation. We also evaluated the effect of IL-5 overexpression on (i) the production of eosinophils in BM, (ii) the accumulation of eosinophils, neutrophils and lymphocytes in blood and airways and (iii) the changes in CD34(+) cell numbers in BM, blood and airways. Bromodeoxyuridine (BrdU) was used to label cells produced during the exposure period. Furthermore, CD3 splenocytes were adoptively transferred to investigate the BM inflammatory response. Allergen exposure induced traffic of BM eosinophils, neutrophils and lymphocytes to the airways and increased the number of BrdU(+) eosinophils, neutrophils, lymphocytes and CD34(+) cells in BALf. IL-5 overexpression enhanced the eosinophilopoiesis and increased the presence of BrdU(+) eosinophils and CD34(+) cells in airways and enhanced the number of CD34(+) cells in BM and blood after allergen exposure. Adoptive transfer of CD3 lymphocytes overexpressing IL-5 caused increased BM eosinophilia. In conclusion, allergen exposure induces traffic of not only newly produced eosinophils but also newly produced neutrophils and lymphocytes into the airways.
  •  
4.
  • Johansson, Anna-Karin, 1974, et al. (författare)
  • Allergen stimulates bone marrow CD34
  • 2004
  • Ingår i: Allergy. ; 59:10, s. 1080-6.
  • Tidskriftsartikel (refereegranskat)abstract
    • The specific mechanisms that alter bone marrow (BM) eosinophilopoiesis in allergen-induced inflammation are poorly understood. The aims of this study were to evaluate (a) whether the number of BM CD34(+) cells is altered due to allergen sensitization and exposure in vivo and (b) whether BM CD34(+) cells produce and release interleukin (IL)-5, IL-3 and granulocyte macrophage-colony stimulating factor (GM-CSF) after stimulation in vitro. A mouse model of ovalbumin (OVA)-induced airway inflammation was used. Bone marrow CD34(+) cells were cultured in vitro and the cytokine release was measured by enzyme-linked immunosorbent assay. The IL-5-production from CD34(+) cells was confirmed by immunocytochemistry. Airway allergen exposure increased the number of BM CD34(+) cells (P = 0.01). Bone marrow CD34(+) cells produced IL-5 when stimulated with the allergen OVA in vitro, but not IL-3 or GM-CSF. Nonspecific stimulus with calcium ionophore and phorbol-myristate-acetate of BM CD34(+) cells caused release of IL-5, IL-3 and GM-CSF. The induced release of IL-5 was increased in alum-injected vs naive mice (P = 0.02), but was not affected by allergen sensitization and exposure. The release of IL-3 and GM-CSF was increased after allergen sensitization and exposure (P < 0.02). In conclusion, allergen can stimulate BM CD34(+) cells to produce IL-5 protein. It is likely that the CD34(+) cells have autocrine functions and thereby regulate the early stages of BM eosinophilopoiesis induced by airway allergen exposure. Alum, a commonly used adjuvant, enhances the release of IL-5 and may thereby enhance eosinophilopoiesis.
  •  
5.
  • Joos, G. F., et al. (författare)
  • Indirect airway challenges
  • 2003
  • Ingår i: Eur Respir J. ; 21:6, s. 1050-68.
  • Tidskriftsartikel (refereegranskat)abstract
    • Indirect challenges act by causing the release of endogenous mediators that cause the airway smooth muscle to contract. This is in contrast to the direct challenges where agonists such as methacholine or histamine cause airflow limitation predominantly via a direct effect on airway smooth muscle. Direct airway challenges have been used widely and are well standardised. They are highly sensitive, but not specific to asthma and can be used to exclude current asthma in a clinic population. Indirect bronchial stimuli, in particular exercise, hyperventilation, hypertonic aerosols, as well as adenosine, may reflect more directly the ongoing airway inflammation and are therefore more specific to identify active asthma. They are increasingly used to evaluate the prevalence of bronchial hyperresponsiveness and to assess specific problems in patients with known asthma, e.g. exercise-induced bronchoconstriction, evaluation before scuba diving. Direct bronchial responsiveness is only slowly and to a modest extent, influenced by repeated administration of inhaled steroids. Indirect challenges may reflect more closely acute changes in airway inflammation and a change in responsiveness to an indirect stimulus may be a clinically relevant marker to assess the clinical course of asthma. Moreover, some of the indirect challenges, e.g. hypertonic saline and mannitol, can be combined with the assessment of inflammatory cells by induction of sputum.
  •  
6.
  • Kips, J. C., et al. (författare)
  • Murine models of asthma
  • 2003
  • Ingår i: Eur Respir J. ; 22:2, s. 374-82.
  • Tidskriftsartikel (refereegranskat)abstract
    • In vivo animal models can offer valuable information on several aspects of asthma pathogenesis and treatment. The mouse is increasingly used in these models, mainly because this species allows for the application in vivo of a broad range of immunological tools, including gene deletion technology. Mice, therefore, seem particularly useful to further elucidate factors influencing the response to inhaled allergens. Examples include: the role of immunoregulatory mechanisms that protect against T-helper cell type 2 cell development; the trafficking of T-cells; and the contribution of the innate immunity. However, as for other animal species, murine models also have limitations. Mice do not spontaneously develop asthma and no model mimics the entire asthma phenotype. Instead, mice should be used to model specific traits of the human disease. The present task force report draws attention to specific aspects of lung structure and function that need to be borne in mind when developing such models and interpreting the results. In particular, efforts should be made to develop models that mimic the lung function changes characteristic of asthma as closely as possible. A large section of this report is therefore devoted to an overview of airway function and its measurement in mice.
  •  
7.
  • Laan, Martti, 1971, et al. (författare)
  • A role of GM-CSF in the accumulation of neutrophils in the airways caused by IL-17 and TNF-alpha
  • 2003
  • Ingår i: The European respiratory journal. - 0903-1936. ; 21:3, s. 387-93
  • Tidskriftsartikel (refereegranskat)abstract
    • The T-cell cytokine interleukin (IL)-17 selectively accumulates neutrophils in murine airways in vivo and may thus constitute a link between activation of T-lymphocytes and accumulation of neutrophils. In this study, the authors evaluated the role of granulocyte macrophage-colony stimulating factor (GM-CSF) in accumulation of neutrophils in the airways caused by IL-17 and tumour necrosis factor (TNF)-alpha. In vitro, human (h) IL-17 concentration-dependently stimulated the release of GM-CSF protein (enzyme-linked immunosorbent assay) in human bronchial epithelial cells (16HBE). IL-17 also time-dependently stimulated the release of GM-CSF protein in venous endothelial (human umbilical vein endothelial cells) cells in vitro. Co-stimulation with IL-17 plus the pro-inflammatory cytokine TNF-alpha potentiated the release of GM-CSF protein in 16HBE cells. hIL-17 also enhanced the expression of GM-CSF messenger ribonucleic acid in 16HBE cells (reverse transcriptase polymerase chain reaction), with a similar order of magnitude as TNF-alpha. Conditioned cell medium from bronchial epithelial cells co-stimulated with hIL-17 plus TNF-alpha prolonged survival (trypan blue exclusion) of human neutrophils in vitro and this effect was blocked by an anti-GM-CSF antibody. In vivo, local co-stimulation with mouse IL-17 plus TNF-alpha caused an additive potentiation of the accumulation of neutrophils in bronchoalveolar lavage fluid from mouse airways and this effect was blocked by an anti-GM-CSF antibody given systemically. In conclusion, granulocyte macrophage-colony stimulating factor is involved in the accumulation of neutrophils in the airways caused by interleukin-17 and tumour necrosis factor-alpha, probably via effects on both recruitment and survival of neutrophils.
  •  
8.
  • Laan, Martti, 1971, et al. (författare)
  • IL-17-induced cytokine release in human bronchial epithelial cells in vitro: role of mitogen-activated protein (MAP) kinases
  • 2001
  • Ingår i: British journal of pharmacology. - 0007-1188. ; 133:1, s. 200-6
  • Tidskriftsartikel (refereegranskat)abstract
    • 1. Recent data indicate that interleukin (IL)-17 may contribute to neutrophilic airway inflammation by inducing the release of neutrophil-mobilizing cytokines from airway cells. The aim of this study was to evaluate the role of mitogen activated protein kinases in IL-17 induced release of IL-8 and IL-6 in bronchial epithelial cells. 2. Transformed human bronchial epithelial cells (16HBE) were stimulated with either IL-17 or vehicle. Both groups were treated either with SB202190 (inhibitor of p38 MAP kinase), PD98059 (inhibitor of extracellular-signal-regulated kinase [ERK] pathway), Ro-31-7549 (protein kinase C [PKC] inhibitor), LY 294002 (a phosphatidylinositol 3-kinase [PI 3-kinase] inhibitor) or vehicle. IL-6 and IL-8 levels were measured in conditioned media by ELISA. 3. The IL-17-induced release of IL-6 and IL-8 was concentration-dependently inhibited by SB202190 and by PD98059 in bronchial epithelial cells without affecting cell proliferation or survival. 4. Ro-31-7549 and LY294002 had no significant effect on IL-17-induced IL-6 or IL-8 release in bronchial epithelial cells. 4. Taken together, these data indicate a role for p38 and ERK kinase pathways in IL-17-induced release of neutrophil-mobilizing cytokines in human bronchial epithelial cells. These mechanisms constitute potential pharmacotherapeutical targets for inhibition of the IL-17-mediated airway neutrophilia.
  •  
9.
  • Lindén, Anders, 1961, et al. (författare)
  • Bronchodilation by an inhaled VPAC(2) receptor agonist in patients with stable asthma
  • 2003
  • Ingår i: Thorax. - 0040-6376. ; 58:3, s. 217-21
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: The synthetic vasoactive intestinal peptide (VIP) analogue Ro 25-1553 is a selective VIP-PACAP type 2 (VPAC(2)) receptor agonist that causes a bronchodilatory effect in guinea pigs in vivo. The effect of Ro 25-1553 given by inhalation to patients with asthma was studied and compared with that of a long acting beta(2) adrenoceptor agonist. METHODS: Twenty four patients with moderate stable asthma participated in a double blind, randomised, placebo controlled, crossover study. The primary variable was bronchodilatory effect (increase in forced expiratory volume in 1 second, FEV(1)) after inhalation of Ro 25-1553 (100 microg or 600 microg) and formoterol (4.5 microg), respectively. Putative side effects were characterised by monitoring sitting blood pressure, serum potassium, electrocardiography and echocardiography. RESULTS: Inhalation of 600 microg Ro 25-1553 caused a rapid bronchodilatory effect (geometric mean increase in FEV(1) compared with placebo) within 3 minutes of 6% (95% CI 4 to 9), as did inhalation of formoterol (8% (95% CI 5 to 10)). The corresponding maximum bronchodilatory effect during 24 hours was similar for 600 microg Ro 25-1553 (7% (95% CI 4 to 10)) and the reference bronchodilator formoterol (10% (95% CI 7 to 12)). However, for both doses of Ro 25-1553 the bronchodilatory effect was attenuated 5 hours after inhalation whereas formoterol still had a bronchodilatory effect 12 hours after inhalation. Neither Ro 25-1553 nor formoterol produced any clinically relevant side effects. No drug related difference in adverse events was observed. CONCLUSION: Inhalation of a synthetic selective VPAC(2) receptor agonist constitutes a promising approach for bronchodilation in patients with asthma.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 25

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy