SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Laakso Markku) srt2:(2008)"

Sökning: WFRF:(Laakso Markku) > (2008)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Koikkalainen, Juha R., et al. (författare)
  • Early familial dilated cardiomyopathy : identification with determination of disease state parameter from cine MR image data
  • 2008
  • Ingår i: Radiology. - : Radiological Society of North America, Inc. - 0033-8419 .- 1527-1315. ; 249:1, s. 88-96
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSE: To characterize early changes in cardiac anatomy and function for lamin A/C gene (LMNA) mutation carriers by using magnetic resonance (MR) imaging and to develop tools to analyze and visualize the findings.MATERIALS AND METHODS: The ethical review board of the institution approved the study, and informed written consent was obtained. The patient group consisted of 12 subjects, seven women (mean age, 36 years; age range, 18-54 years) and five men (mean age, 28 years; age range, 18-39 years) of Finnish origin, who were each heterozygotes with one LMNA mutation that may cause familial dilated cardiomyopathy (DCM). All the subjects were judged to be healthy with transthoracic echocardiography. The control group consisted of 14 healthy subjects, 11 women (mean age, 41 years; range, 23-54 years) and three men (mean age, 45 years; range, 34-57 years), of Finnish origin. Cine steady state free precession MR imaging was performed with a 1.5-T system. The volumes, wall thickness, and wall motion of both left ventricle (LV) and right ventricle were assessed. A method combining multiple MR image parameters was used to generate a global cardiac function index, the disease state parameter (DSP). A visual fingerprint was generated to assess the severity of familial DCM.RESULTS: The mean DSP of the patient group (0.69 +/- 0.15 [standard deviation]) was significantly higher than that of the control group (0.32 +/- 0.13) (P = .00002). One subject had an enlarged LV.CONCLUSION: Subclinical familial DCM was identified by determination of the DSP with MR imaging, and this method might be used to recognize familial DCM at an early stage.
  •  
2.
  • Chen, Wei-Min, et al. (författare)
  • Variations in the G6PC2/ABCB11 genomic region are associated with fasting glucose levels.
  • 2008
  • Ingår i: Journal of Clinical Investigation. - 0021-9738. ; Jun 2, s. 2620-2628
  • Tidskriftsartikel (refereegranskat)abstract
    • Identifying the genetic variants that regulate fasting glucose concentrations may further our understanding of the pathogenesis of diabetes. We therefore investigated the association of fasting glucose levels with SNPs in 2 genome-wide scans including a total of 5,088 nondiabetic individuals from Finland and Sardinia. We found a significant association between the SNP rs563694 and fasting glucose concentrations (P = 3.5 x 10(-7)). This association was further investigated in an additional 18,436 nondiabetic individuals of mixed European descent from 7 different studies. The combined P value for association in these follow-up samples was 6.9 x 10(-26), and combining results from all studies resulted in an overall P value for association of 6.4 x 10(-33). Across these studies, fasting glucose concentrations increased 0.01-0.16 mM with each copy of the major allele, accounting for approximately 1% of the total variation in fasting glucose. The rs563694 SNP is located between the genes glucose-6-phosphatase catalytic subunit 2 (G6PC2) and ATP-binding cassette, subfamily B (MDR/TAP), member 11 (ABCB11). Our results in combination with data reported in the literature suggest that G6PC2, a glucose-6-phosphatase almost exclusively expressed in pancreatic islet cells, may underlie variation in fasting glucose, though it is possible that ABCB11, which is expressed primarily in liver, may also contribute to such variation.
  •  
3.
  • Lindi, Virpi, et al. (författare)
  • The G-250A polymorphism in the hepatic lipase gene promoter is associated with changes in hepatic lipase activity and LDL cholesterol : The KANWU Study
  • 2008
  • Ingår i: NMCD. Nutrition Metabolism and Cardiovascular Diseases. - : Elsevier BV. - 0939-4753 .- 1590-3729. ; 18:2, s. 88-95
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and aims: Hepatic lipase (HL) catalyzes the hydrolysis of triglycerides and phospholipids from lipoproteins, and promotes the hepatic uptake of tipoproteins. A common G-250A polymorphism in the promoter of the hepatic lipase gene (LIPC) has been described. The aim was to study the effects of the G-250A polymorphism on HL activity, serum lipid profile and insulin sensitivity. Methods and results: Altogether 151 healthy subjects (age 49 +/- 8 years, BMI 26.5 +/- 3.0 kg/m(2)) were randomly assigned for 3 months to an isoenergetic diet containing either a high proportion of saturated fatty acids (SFA diet) or monounsaturated fatty acids (MUFA diet). Within groups there was a second random assignment to supplements with fish oil (3.6 g n-3 FA/day) or placebo. At baseline, the A-250A genotype was associated with high serum LDL cholesterol concentration (P = 0.030 among three genotypes). On the MUFA diet carriers of the A-250A genotype presented a greater decrease in LDL cholesterol concentration than subjects with other genotypes (P = 0.007 among three genotypes). The rare -250A allele was related to Low HL activity (P < 0.001 among three genotypes). The diet did not affect the levels of HL activity among the genotypes. Conclusion: The A-250A genotype of the LIPC gene was associated with high LDL cholesterol concentration, but the MUFA-enriched diet reduced serum LDL cholesterol concentration especially in subjects with the A-250A genotype.
  •  
4.
  • Zeggini, Eleftheria, et al. (författare)
  • Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes
  • 2008
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 40:5, s. 638-645
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association (GWA) studies have identified multiple loci at which common variants modestly but reproducibly influence risk of type 2 diabetes (T2D)(1-11). Established associations to common and rare variants explain only a small proportion of the heritability of T2D. As previously published analyses had limited power to identify variants with modest effects, we carried out meta-analysis of three T2D GWA scans comprising 10,128 individuals of European descent and similar to 2.2 million SNPs (directly genotyped and imputed), followed by replication testing in an independent sample with an effective sample size of up to 53,975. We detected at least six previously unknown loci with robust evidence for association, including the JAZF1 (P=5.0 x 10(-14)), CDC123-CAMK1D (P=1.2 x 10(-10)), TSPAN8-LGR5 (P=1.1 x 10(-9)), THADA (P=1.1 x 10(-9)), ADAMTS9 (P=1.2 x 10(-8)) and NOTCH2 (P=4.1 x 10(-8)) gene regions. Our results illustrate the value of large discovery and follow-up samples for gaining further insights into the inherited basis of T2D.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy