SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "hsv:(NATURVETENSKAP) hsv:(Geovetenskap och miljövetenskap) hsv:(Meteorologi och atmosfärforskning) ;lar1:(umu)"

Search: hsv:(NATURVETENSKAP) hsv:(Geovetenskap och miljövetenskap) hsv:(Meteorologi och atmosfärforskning) > Umeå University

  • Result 1-10 of 76
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Myers-Smith, Isla H., et al. (author)
  • Complexity revealed in the greening of the Arctic
  • 2020
  • In: Nature Climate Change. - : Springer Science and Business Media LLC. - 1758-678X .- 1758-6798. ; 10:2, s. 106-117
  • Journal article (peer-reviewed)abstract
    • As the Arctic warms, vegetation is responding, and satellite measures indicate widespread greening at high latitudes. This ‘greening of the Arctic’ is among the world’s most important large-scale ecological responses to global climate change. However, a consensus is emerging that the underlying causes and future dynamics of so-called Arctic greening and browning trends are more complex, variable and inherently scale-dependent than previously thought. Here we summarize the complexities of observing and interpreting high-latitude greening to identify priorities for future research. Incorporating satellite and proximal remote sensing with in-situ data, while accounting for uncertainties and scale issues, will advance the study of past, present and future Arctic vegetation change.
  •  
2.
  • Soerensen, Anne L., et al. (author)
  • Deciphering the Role of Water Column Redoxclines on Methylmercury Cycling Using Speciation Modeling and Observations From the Baltic Sea
  • 2018
  • In: Global Biogeochemical Cycles. - : American Geophysical Union (AGU). - 0886-6236 .- 1944-9224. ; 32:10, s. 1498-1513
  • Journal article (peer-reviewed)abstract
    • Oxygen-depleted areas are spreading in coastal and offshore waters worldwide, but the implication for production and bioaccumulation of neurotoxic methylmercury (MeHg) is uncertain. We combined observations from six cruises in the Baltic Sea with speciation modeling and incubation experiments to gain insights into mercury (Hg) dynamics in oxygen depleted systems. We then developed a conceptual model describing the main drivers of Hg speciation, fluxes, and transformations in water columns with steep redox gradients. MeHg concentrations were 2-6 and 30-55 times higher in hypoxic and anoxic than in normoxic water, respectively, while only 1-3 and 1-2 times higher for total Hg (THg). We systematically detected divalent inorganic Hg (Hg-II) methylation in anoxic water but rarely in other waters. In anoxic water, high concentrations of dissolved sulfide cause formation of dissolved species of Hg-II: HgS2H(aq)- and Hg (SH)(2)(0)((aq)). This prolongs the lifetime and increases the reservoir of Hg-II readily available for methylation, driving the high MeHg concentrations in anoxic zones. In the hypoxic zone and at the hypoxic-anoxic interface, Hg concentrations, partitioning, and speciation are all highly dynamic due to processes linked to the iron and sulfur cycles. This causes a large variability in bioavailability of Hg, and thereby MeHg concentrations, in these zones. We find that zooplankton in the summertime are exposed to 2-6 times higher MeHg concentrations in hypoxic than in normoxic water. The current spread of hypoxic zones in coastal systems worldwide could thus cause an increase in the MeHg exposure of food webs.
  •  
3.
  • Abbott, Benjamin W., et al. (author)
  • Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire : an expert assessment
  • 2016
  • In: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 11:3
  • Journal article (peer-reviewed)abstract
    • As the permafrost region warms, its large organic carbon pool will be increasingly vulnerable to decomposition, combustion, and hydrologic export. Models predict that some portion of this release will be offset by increased production of Arctic and boreal biomass; however, the lack of robust estimates of net carbon balance increases the risk of further overshooting international emissions targets. Precise empirical or model-based assessments of the critical factors driving carbon balance are unlikely in the near future, so to address this gap, we present estimates from 98 permafrost-region experts of the response of biomass, wildfire, and hydrologic carbon flux to climate change. Results suggest that contrary to model projections, total permafrost-region biomass could decrease due to water stress and disturbance, factors that are not adequately incorporated in current models. Assessments indicate that end-of-the-century organic carbon release from Arctic rivers and collapsing coastlines could increase by 75% while carbon loss via burning could increase four-fold. Experts identified water balance, shifts in vegetation community, and permafrost degradation as the key sources of uncertainty in predicting future system response. In combination with previous findings, results suggest the permafrost region will become a carbon source to the atmosphere by 2100 regardless of warming scenario but that 65%-85% of permafrost carbon release can still be avoided if human emissions are actively reduced.
  •  
4.
  • Matthes, Heidrun, et al. (author)
  • Sensitivity of high-resolution Arctic regional climate model projections to different implementations of land surface processes
  • 2012
  • In: Climatic Change. - : Springer Science and Business Media LLC. - 0165-0009 .- 1573-1480. ; 111:2, s. 197-214
  • Journal article (peer-reviewed)abstract
    • This paper discusses the effects of vegetation cover and soil parameters on the climate change projections of a regional climate model over the Arctic domain. Different setups of the land surface model of the regional climate model HIRHAM were realized to analyze differences in the atmospheric circulation caused by (1) the incorporation of freezing/thawing of soil moisture, (2) the consideration of top organic soil horizons typical for the Arctic and (3) a vegetation shift due to a changing climate. The largest direct thermal effect in 2 m air temperature was found for the vegetation shift, which ranged between −1.5 K and 3 K. The inclusion of a freeze/thaw scheme for soil moisture shows equally large sensitivities in spring over cool areas with high soil moisture content. Although the sensitivity signal in 2 m air temperature for the experiments differs in amplitude, all experiments show changes in mean sea level pressure (mslp) and geopotential height (z) throughout the troposphere of similar magnitude (mslp: −2 hPa to 1.5 hPa, z: −15 gpm to 5 gpm). This points to the importance of dynamical feedbacks within the atmosphere-land system. Land and soil processes have a distinct remote influence on large scale atmospheric circulation patterns in addition to their direct, regional effects. The assessment of induced uncertainties due to the changed implementations of land surface processes discussed in this study demonstrates the need to take all those processes for future Arctic climate projections into account, and demonstrates a clear need to include similar implementations in regional and global climate models.
  •  
5.
  •  
6.
  •  
7.
  • Bidleman, Terry, 1942-, et al. (author)
  • A review of halogenated natural products in Arctic, Subarctic and Nordic ecosystems
  • 2019
  • In: Emerging Contaminants. - : Elsevier. - 2405-6650 .- 2405-6642. ; 5, s. 89-115
  • Journal article (peer-reviewed)abstract
    • Halogenated natural products (HNPs) are organic compounds containing bromine, chlorine, iodine, andrarely fluorine. HNPs comprise many classes of compounds, ranging in complexity from halocarbons tohigher molecular weight compounds, which often contain oxygen and/or nitrogen atoms in addition tohalogens. Many HNPs are biosynthesized by marine bacteria, macroalgae, phytoplankton, tunicates,corals, worms, sponges and other invertebrates. This paper reviews HNPs in Arctic, Subarctic and Nordicecosystems and is based on sections of Chapter 2.16 in the Arctic Monitoring and Assessment Program(AMAP) assessment Chemicals of Emerging Arctic Concern (AMAP, 2017) which deal with the highermolecular weight HNPs. Material is updated and expanded to include more Nordic examples. Much ofthe chapter is devoted to “bromophenolic” HNPs, viz bromophenols (BPs) and transformation productsbromoanisoles (BAs), hydroxylated and methoxylated bromodiphenyl ethers (OH-BDEs, MeO-BDEs) andpolybrominated dibenzo-p-dioxins (PBDDs), since these HNPs are most frequently reported. Othersdiscussed are 2,20-dimethoxy-3,30,5,50-tetrabromobiphenyl (2,20-dimethoxy-BB80), polyhalogenated 10-methyl-1,20-bipyrroles (PMBPs), polyhalogenated 1,10-dimethyl-2,20-bipyrroles (PDBPs), polyhalogenatedN-methylpyrroles (PMPs), polyhalogenated N-methylindoles (PMIs), bromoheptyl- and bromooctylpyrroles, (1R,2S,4R,5R,10E)-2-bromo-1-bromomethyl-1,4-dichloro-5-(20-chloroethenyl)-5-methylcyclohexane (mixed halogenated compound MHC-1), polybrominated hexahydroxanthene derivatives(PBHDs) and polyhalogenated carbazoles (PHCs). Aspects of HNPs covered are physicochemicalproperties, sources and production, transformation processes, concentrations and trends in the physicalenvironment and biota (marine and freshwater). Toxic properties of some HNPs and a discussion of howclimate change might affect HNPs production and distribution are also included. The review concludeswith a summary of research needs to better understand the role of HNPs as “chemicals of emergingArctic concern”.
  •  
8.
  • Avagyan, Rozanna, et al. (author)
  • Particulate hydroxy-PAH emissions from a residential wood log stove using different fuels and burning conditions
  • 2016
  • In: Atmospheric Environment. - : Elsevier BV. - 1352-2310 .- 1873-2844. ; 140, s. 1-9
  • Journal article (peer-reviewed)abstract
    • Hydroxylated polycyclic aromatic hydrocarbons are oxidation products of polycyclic aromatic hydrocarbons, but have not been studied as extensively as polycyclic aromatic hydrocarbons. Several studies have however shown that hydroxylated polycyclic aromatic hydrocarbons have toxic and carcinogenic properties. They have been detected in air samples in semi urban areas and combustion is assumed to be the primary source of those compounds. To better understand the formation and occurrence of particulate hydroxylated polycyclic aromatic hydrocarbons from residential wood log stove combustion, 9 hydroxylated polycyclic aromatic hydrocarbons and 2 hydroxy biphenyls were quantified in particles generated from four different types of wood logs (birch, spruce, pine, aspen) and two different combustion conditions (nominal and high burn rate). A previously developed method utilizing liquid chromatography photo ionization tandem mass spectrometry and pressurized liquid extraction was used. Polycyclic aromatic hydrocarbons were analyzed along with hydroxylated polycyclic aromatic hydrocarbons. The hydroxylated polycyclic aromatic hydrocarbon emissions varied significantly across different wood types and burning conditions; the highest emissions for nominal burn rate were from spruce and for high burn rate from pine burning. Emissions from nominal burn rate corresponded on average to 15% of the emissions from high burn rate, with average emissions of 218 mu g/MJ(fuel) and 32.5 mu g/MJ(fuel) for high burn rate and nominal burn rate, respectively. Emissions of the measured hydroxylated polycyclic aromatic hydrocarbons corresponded on average to 28% of polycyclic aromatic hydrocarbons emissions. This study shows that wood combustion is a large emission source of hydroxylated polycyclic aromatic hydrocarbons and that not only combustion conditions, but also wood type influences the emissions of hydroxylated polycyclic aromatic hydrocarbons and polycyclic aromatic hydrocarbons. There are few studies that have determined hydroxylated polycyclic aromatic hydrocarbons in emissions from wood combustion, and it is therefore necessary to further investigate the formation, occurrence and distribution of these compounds as they are present in significant amounts in wood smoke particles.
  •  
9.
  • Golub, Malgorzata, et al. (author)
  • Diel, seasonal, and inter-annual variation in carbon dioxide effluxes from lakes and reservoirs
  • 2023
  • In: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 18:3
  • Journal article (peer-reviewed)abstract
    • Accounting for temporal changes in carbon dioxide (CO2) effluxes from freshwaters remains a challenge for global and regional carbon budgets. Here, we synthesize 171 site-months of flux measurements of CO2 based on the eddy covariance method from 13 lakes and reservoirs in the Northern Hemisphere, and quantify dynamics at multiple temporal scales. We found pronounced sub-annual variability in CO2 flux at all sites. By accounting for diel variation, only 11% of site-months were net daily sinks of CO2. Annual CO2 emissions had an average of 25% (range 3%-58%) interannual variation. Similar to studies on streams, nighttime emissions regularly exceeded daytime emissions. Biophysical regulations of CO2 flux variability were delineated through mutual information analysis. Sample analysis of CO2 fluxes indicate the importance of continuous measurements. Better characterization of short- and long-term variability is necessary to understand and improve detection of temporal changes of CO2 fluxes in response to natural and anthropogenic drivers. Our results indicate that existing global lake carbon budgets relying primarily on daytime measurements yield underestimates of net emissions.
  •  
10.
  • Nordin, Erik, et al. (author)
  • Influence of ozone initiated processing on the toxicity of aerosol particles from small scale wood combustion
  • 2015
  • In: Atmospheric Environment. - : Elsevier BV. - 1352-2310 .- 1873-2844. ; 102, s. 282-289
  • Journal article (peer-reviewed)abstract
    • Black carbon containing emissions from biomass combustion are being transformed in the atmosphere upon processing induced by tropospheric ozone and UV. The knowledge today is very limited on how atmospheric processing affects the toxicological properties of the emissions. The aim of this study was to investigate the influence of ozone initiated (dark) atmospheric processing on the physicochemical and toxicological properties of particulate emissions from wood combustion. Emissions from a conventional wood stove operated at two combustion conditions (nominal and hot air starved) were diluted and transferred to a chamber. Particulate matter (PM) was collected before and after ozone addition to the chamber using an impactor. Detailed chemical and physical characterization was performed on chamber air and collected PM. The collected PM was investigated toxicologically in vitro with a mouse macrophage model, endpoints included: cell cycle analysis, viability, inflammation and genotoxicity. The results suggest that changes in the organic fraction, including polycyclic aromatic hydrocarbons (PAHs) are the main driver for differences in obtained toxicological effects. Fresh hot air starved emissions containing a higher organic and PAH mass-fraction affected cell viability stronger than fresh emissions from nominal combustion. The PAH mass fractions decreased upon aging due to chemical degradation. Dark aging increased genotoxicity, reduced viability and reduced release of inflammatory markers. These differences were statistically significant for single doses and typically less pronounced. We hypothesize that the alterations in toxicity upon simulated dark aging in the atmosphere may be caused by reaction products that form when PAHs and other organic compounds react with ozone and nitrate radicals. (C) 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/).
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 76
Type of publication
journal article (66)
conference paper (4)
other publication (2)
doctoral thesis (2)
research review (2)
Type of content
peer-reviewed (70)
other academic/artistic (4)
pop. science, debate, etc. (2)
Author/Editor
Forsberg, Bertil (6)
Boman, Christoffer (6)
Pagels, Joakim (5)
André, Mats (3)
Nyström, Robin (3)
Ryden, Lars (2)
show more...
Eckerberg, Katarina, ... (2)
Sunyer, J (2)
Fick, Jerker (2)
Epstein, Howard E. (2)
Buffam, Ishi (2)
Cornelissen, J. Hans ... (2)
Forbes, Bruce C. (2)
Goetz, Scott J. (2)
Karlsson, Jan (2)
Kuhry, Peter (2)
Laudon, Hjalmar (2)
Tranvik, Lars J. (2)
Eriksson, Axel (2)
Boily, Jean-Francois (2)
Gustafsson, Bengt (2)
Norbäck, Dan (2)
Hornborg, Alf (2)
Modig, Lars (2)
Havnevik, Kjell (2)
Swain, Ashok (2)
Svenningsson, Birgit ... (2)
Swietlicki, Erik (2)
Falk, John (2)
Westerholm, Roger (2)
Friman, Eva (2)
Vaivads, Andris (2)
Fazakerley, A. (2)
Shchukarev, Andrey (2)
Gren, Ing-Marie (2)
Andersen, Christina (2)
Cornilleau-Wehrlin, ... (2)
Andersson, Camilla (2)
Åström, Christofer, ... (2)
Eriksson, Axel C. (2)
Andersson, Barbro (2)
Liljenström, Hans (2)
Sanne, Christer (2)
Silveira, Semida (2)
Molander, Sverker (2)
Svanström, Magdalena (2)
Orru, Hans (2)
Martin-Torres, Javie ... (2)
Nilsson, Calle (2)
Vogel, Hendrik (2)
show less...
University
Lund University (12)
Stockholm University (9)
University of Gothenburg (7)
Uppsala University (7)
Swedish University of Agricultural Sciences (6)
show more...
Luleå University of Technology (4)
Linnaeus University (3)
Royal Institute of Technology (2)
Örebro University (2)
Linköping University (2)
Chalmers University of Technology (1)
show less...
Language
English (74)
Swedish (2)
Research subject (UKÄ/SCB)
Natural sciences (76)
Engineering and Technology (10)
Medical and Health Sciences (6)
Agricultural Sciences (6)
Social Sciences (2)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view